Skip to main content

Advertisement

Log in

Microscopic Models for Chemical Thermodynamics

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We introduce an infinite particle system dynamics, which includes stochastic chemical kinetics models, the classical Kac model and free space movement. We study energy redistribution between two energy types (kinetic and chemical) in different time scales, similar to energy redistribution in the living cell. One example is considered in great detail, where the model provides main formulas of chemical thermodynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Arnold M. Theodosopulu (1980) ArticleTitleDeterministic limit of the stochastic model of chemical reactions with diffusion Adv. Appl. Prob. 12 367–379

    Google Scholar 

  2. M. Bramson and J. Lebowitz. Spatial structure in low dimensions for diffusion limited two-particle reactions. Ann. Appl. Prob. (2001).

  3. R. Dobrushin (1956) ArticleTitleOn the Poisson law for the distribution of particles in space Ukrainian Math. J. 8 IssueID2 130–134

    Google Scholar 

  4. Fayolle G., Malyshev V., Pirogov S. (2004). Stochastic chemical kinetics with energy parameters. Rapports de Recherche, INRIA, No. 5008, 2003. To appear in “Trends in Mathematics: Mathematics and Computer Science”, v. 3, Birkhauser,

  5. C. Gadgil, Chang-Hyeong Lee and H. Othmer, A stochastic analysis of first-order reaction networks. Preprint, 2003.

  6. M. Kac, Probability and Related Topics in Physical Sciences (Interscience Publishers, 1958).

  7. J. Keizer (1987) Statistical Thermodynamics of Nonequilibrium Processes Springer Berlin.

    Google Scholar 

  8. P. Kotelenez (1986) ArticleTitleLaw of large numbers and central limit theorem for linear chemical reaction with diffusion Ann. Prob. 14 173–193

    Google Scholar 

  9. L. Landay (1976) Lifshitz. Course of Theoretical Physics, v. 5 Statistical Physics Moscow. 584

    Google Scholar 

  10. J. Lebowitz Ch. Maes (2003) Entropy–a Dialog In. “Entropy” Princeton Univ Press Princeton. 269–276

    Google Scholar 

  11. M.A. Leontovich (1935) ArticleTitleMain equations of kinetical theory of gases from the random processes point of view J. Experim. Theor. Physics. 5 IssueID3–4 211–231

    Google Scholar 

  12. Th. Ligget (1985) Interacting Particle Systems Springer Berlin 496

    Google Scholar 

  13. C. Maes K. Netocny M. Verschuere (2003) ArticleTitleHeat conduction networks, J Stat. Phys. 111 1219–1244 Occurrence Handle10.1023/A:1023004300229

    Article  Google Scholar 

  14. Ch. Maes M. Wieren Particlevan (2003) ArticleTitleA Markov model for kinesin JSP. 112 IssueID1/2 329–335

    Google Scholar 

  15. Malyshev V., Minlos R. (1995). Linear infinite-particle operators. AMS Translations Math. Monographs. 143

  16. Malyshev V., Pirogov S., Rybko A. (2004). Random walks and chemical networks. Moscow Math. J. 2

  17. A. De Masi P. Ferrari J.L. Lebowitz (1986) ArticleTitleReaction–diffusion equations for interacting particle systems J. Stat. Phys. 44 IssueID3/4 589–644 Occurrence Handle10.1007/BF01011311

    Article  Google Scholar 

  18. D. McQuarrie (1967) ArticleTitleStochastic approach to chemical kinetics J. Appl. Prob. 4 413–478

    Google Scholar 

  19. H. Othmer, Analysis of complex reaction networks. University of Minnesota preprint, Minneapolis, December 9, 2003.

  20. R. F. Streater, Statistical Dynamics. Imperial College Press, 1995.

  21. J. Tuszynski, M. Kurzynski, Introduction to molecular biophysics CRC Press, 2003.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Malyshev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malyshev, V.A. Microscopic Models for Chemical Thermodynamics. J Stat Phys 119, 997–1026 (2005). https://doi.org/10.1007/s10955-005-4408-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-005-4408-z

Keywords

Navigation