Skip to main content
Log in

Lattice-Boltzmann Simulation of Particle Suspensions in Shear Flow

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Inclusion of short-range particle–particle interactions for increased numerical stability in a lattice-Boltzmann code for particle-fluid suspensions, and handling of the particle phase for an effective implementation of the code for parallel computing, are discussed and formulated. In order to better understand the origin of the shear-thickening behavior observed in real suspensions, two simplified cases are considered with the code thus developed. A chain-like cluster of suspended particles is shown to increase the momentum transfer in a shear flow between channel walls, and thereby the effective viscosity of the suspension in comparison with random configurations of particles. A single suspended particle is also shown to increase the effective viscosity under shear flow of this simple suspension for particle Reynolds numbers above unity, due to inertial effects that change the flow configuration around the particle. These mechanisms are expected to carry over to large-scale particle-fluid suspensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • H. A. Barnes J. F. Hutton K. Walters (1989) An Introduction to Rheology Elsevier Science Publishers Amsterdam

    Google Scholar 

  • N.-Q. Nguyen A.J. C. Ladd (2004) ArticleTitleMicrostructure in a settling suspension of hard spheres Phys. Rev. E 69 050401 Occurrence Handle10.1103/PhysRevE.69.050401 Occurrence Handle2004PhRvE..69e0401N

    Article  ADS  Google Scholar 

  • S. Chen G. D. Doolen (1998) ArticleTitleLattice Boltzmann method for fluid flows Annu. Rev. Fluid Mech. 30 329–364 Occurrence Handle10.1146/annurev.fluid.30.1.329 Occurrence Handle1998AnRFM..30..329C Occurrence Handle98m:76118

    Article  ADS  MathSciNet  Google Scholar 

  • Y.H. Qian D. d’Humières P. Lallemand (1992) ArticleTitleLattice BGK models for Navier–Stokes equation Europhys. Lett. 17 479–484 Occurrence Handle1992EL.....17..479Q

    ADS  Google Scholar 

  • A. J. C. Ladd, Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 1. Theoretical foundation, J. Fluid Mech. 271:285–310 (1994); Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 2. Numerical results, 271:311–339 (1994).

    Google Scholar 

  • M. P. Allen D. J. Tildesley (1987) Computer Simulation of Liquids Clarendon Press Oxford

    Google Scholar 

  • C. K. Aidun Y. Lu (1995) ArticleTitleLattice Boltzmann simulation of solid particles suspended in fluid J. Stat. Phys. 81 49–61 Occurrence Handle10.1007/BF02179967

    Article  Google Scholar 

  • N.-Q. Nguyen A.J. C. Ladd (2002) ArticleTitleLubrication corrections for lattice-Boltzmann simulations of particle suspensions Phys. Rev. E 66 046708 Occurrence Handle2002PhRvE..66d6708N

    ADS  Google Scholar 

  • Ding E.-J. Aidun C. K. (2003) ArticleTitleExtension of the lattice-Boltzmann method for direct simulation of suspended particles near contact J. Stat. Phys. 112 685–708

    Google Scholar 

  • R.C. Ball J. R. Melrose (1995) ArticleTitleLubrication breakdown in hydrodynamic simulations of concentrated colloids, Adv Colloid Interface Sci. 59 19–30

    Google Scholar 

  • D. Kandhai A. Koponen Hoekstra A. G. M. Kataja J. Timonen P.M. A. Sloot (1998) ArticleTitleLattice-Boltzmann hydrodynamics on parallel systems Comput. Phys. Commun. 111 14–26 Occurrence Handle1998CoPhC.111...14K

    ADS  Google Scholar 

  • T. Suviola, Parallelization of a lattice Boltzmann suspension flow solver, Proceedings of PARA 2002, June 15–18, 2002, Espoo, Finland, J. Fagerholm et al. eds., Lecture Notes in Computer Science, Vol. 2367, pp. 603–610 (2002).

  • G. Wolffe, J. Oleszkiewicz, D. Cherba, and D. Qi, Parallelizing solid particles in lattice-Boltzmann fluid dynamics, Proceedings of PDPTA ’02, June 24–27, 2002, Las Vegas, USA, H. R. Arabnia ed. (CSREA Press, 2002), pp. 2016–2022.

  • M.I. Krieger T. J. Dougherty (1959) ArticleTitleA mechanism for non-Newtonian flow in suspensions of rigid spheres Trans. Soc. Rheol. 3 137–152 Occurrence Handle10.1122/1.548848

    Article  Google Scholar 

  • A. Shakib-Manesh P. Raiskinmäki A. Koponen M. Kataja J. Timonen (2002) ArticleTitleShear stress in a Couette flow of liquid-particle suspensions J. Stat. Phys. 107 67–84 Occurrence Handle10.1023/A:1014598201975

    Article  Google Scholar 

  • P. Raiskinmäki J. A. Åström M. Kataja M. Latva-Kokko A. Koponen A. Jäsberg A. Shakib-Manesh J. Timonen (2003) ArticleTitleClustering and viscosity in a shear flow of a particulate suspension Phys. Rev. E 68 061403 Occurrence Handle2003PhRvE..68f1403R

    ADS  Google Scholar 

  • N.A. Patankar H. H. Hu (2002) ArticleTitleFinite Reynolds number effect on the rheology of a dilute suspension of neutrally buoyant circular particles in a Newtonian fluid Int. J. Multiphase Flow 28 409–425

    Google Scholar 

  • P. Raiskinmäki, Dynamics of multiphase flows: liquid-particle suspensions and droplet spreading, PhD Thesis University of Jyväskylä, (2004).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Hyväluoma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hyväluoma, J., Raiskinmäki, P., Koponen, A. et al. Lattice-Boltzmann Simulation of Particle Suspensions in Shear Flow. J Stat Phys 121, 149–161 (2005). https://doi.org/10.1007/s10955-005-4314-4

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-005-4314-4

Keywords

Navigation