Skip to main content
Log in

Phase Transitions on Markovian Bipartite Graphs—an Application of the Zero-range Process

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

A Correction to this article was published on 06 November 2023

This article has been updated

Abstract

We analyze the existence and the size of the giant component in the stationary state of a Markovian model for bipartite multigraphs, in which the movement of the edge ends on one set of vertices of the bipartite graph is a zero-range process, the degrees being static on the other set. The analysis is based on approximations by independent variables and on the results of Molloy and Reed for graphs with prescribed degree sequences. The possible types of phase diagrams are identified by studying the behavior below the zero-range condensation point. As a specific example, we consider the so-called Evans interaction. In particular, we examine the values of a critical exponent, describing the growth of the giant component as the value of the dilution parameter controlling the connectivity is increased above the critical threshold. Rigorous analysis spans a large portion of the parameter space of the model exactly at the point of zero-range condensation. These results, supplemented with conjectures supported by Monte Carlo simulations, suggest that the phenomenological Landau theory for percolation on graphs is not broken by the fluctuations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

References

  • B. Bollobás (1985) Random Graphs Academic Press London

    Google Scholar 

  • S. N. Dorogovtsev J. F. F. Mendes (2002) Adv. Phys. 51 1079 Occurrence Handle10.1080/00018730110112519

    Article  Google Scholar 

  • A.-L. Barabási R. Albert (1999) ArticleTitleEmergence of scaling in random networks Science 286 509–512 Occurrence Handle10.1126/science.286.5439.509 Occurrence Handle10521342 Occurrence HandleMR2091634

    Article  PubMed  MathSciNet  Google Scholar 

  • D. J. de S. Price A general (1976) ArticleTitletheory of bibliometric and other cumulative advantage processes J. Am. Soc. Inform. Sci. 27 292–306

    Google Scholar 

  • F. Spitzer (1970) Adv. Math. 5 246–290 Occurrence Handle10.1016/0001-8708(70)90034-4

    Article  Google Scholar 

  • G. Palla I. Derényi I. Farkas T. Vicsek (2004) ArticleTitleStatistical mechanics of topological phase transitions in networks Phys. Rev. E69 046117

    Google Scholar 

  • B. Pittel W. A. Woyczynski J. A. Mann (1990) ArticleTitleRandom tree-type partitions as a model for acyclic polymerization: Holtsmark (3/2-stable) distribution of the supercritical gel Ann. Prob. 18 319–341

    Google Scholar 

  • B. Pittel W. A. Woyczynski A graph-valued (1990) ArticleTitleMarkov process as rings-allowed polymerization model: Subcritical behavior SIAM J. Appl. Math. 50 1200–1220 Occurrence Handle10.1137/0150073

    Article  Google Scholar 

  • S. N. Dorogovtsev J. F. F. Mendes A. N. Samukhin (2003) ArticleTitlePrinciples of statistical mechanics of uncorrelated random networks Nucl. Phys. B 666 396–416 Occurrence Handle10.1016/S0550-3213(03)00504-2

    Article  Google Scholar 

  • M. R. Evans, Brazilian J. Phys. 30: 42 (2000), e-print cond-mat/0007293.

    Google Scholar 

  • M. E. J. Newman S. H. Strogatz D. J. Watts (2001) ArticleTitleRandom graphs with arbitrary degree distributions and their applications Phys. Rev. E 64 026118

    Google Scholar 

  • M. Molloy B. Reed (1995) ArticleTitleA critical point for random graphs with a given degree sequence Random Struct. Algorithms 6 161

    Google Scholar 

  • M. Molloy B. Reed (1998) ArticleTitleThe size of the giant component of a random graph with a given degree sequence Combinatorics Probab. Comput. 7 295 Occurrence Handle10.1017/S0963548398003526

    Article  Google Scholar 

  • We say that an event B happens with high probability if \(\lim_{L\rightarrow \infty} P(B)=1\).

  • S. Großkinsky G. M. Schütz H. Spohn (2003) J. Stat. Phys. 113 IssueID3 389–410 Occurrence Handle10.1023/A:1026008532442

    Article  Google Scholar 

  • I. Jeon P. March B. Pittel (2000) Ann. Probab. 28 1162–1194 Occurrence Handle10.1214/aop/1019160330

    Article  Google Scholar 

  • R. Arratia S. Tavaré (1994) ArticleTitleIndependent process approximations for random combinatorial structures Adv. Math. 104 90–154 Occurrence Handle10.1006/aima.1994.1022

    Article  Google Scholar 

  • S. Corteel B. Pittel C. D. Savage H. S. Wilf (1999) ArticleTitleOn the multiplicity of parts in a random partition, Random Struct Algorithms 14 185–197

    Google Scholar 

  • P. Brémaud (1999) Markov Chains: Gibbs Fields, Monte-Carlo Simulation, and Queues Springer New York

    Google Scholar 

  • B. V. Gnedenko A. N. Kolmogorov Limit Distributions for Sums of Independent Random Variables (1968) revised edition Addison-Wesley Reading

    Google Scholar 

  • C. Kipnis C. Landim (1999) Scaling Limits of Interacting Particle Systems Springer Berlin

    Google Scholar 

  • T. M. Liggett (1985) Interacting Particle Systems Springer Berlin

    Google Scholar 

  • T. M. Liggett (1999) Stochastic Interacting Systems: Contact, Voter and Exclusion Processes Springer Berlin

    Google Scholar 

  • B. Derrida M. R. Evans in Nonequilibrium Statistical Mechanics in One Dimension V. Privman (1997) ed. Cambridge University Press Cambridge

    Google Scholar 

  • M. Abramowitz I. A. Stegun (1972) Handbook of Mathematical Functions Dover New York

    Google Scholar 

  • N. Alon J. H. Spencer P. Erdös (1991) The Probabilistic Method Wiley New York

    Google Scholar 

  • Our main theoretical results and conjectures were tested by performing Monte-Carlo simulations, where the random number generator Mersenne twister was utilized. For the less interesting small values of $\rho$ the simulations were easier than for high density, where to actually observe the leading order critical behavior (and the exponent) would require simulations with of the order of hundred-thousand vertices and even a larger number of particles on $W$. Note that the parameter $M_2$ should be a ‘‘macroscopic’’ number, which becomes a problem for $r=2M_2/N$ approaching zero as in the case of Fig. \ref{fig3}.

  • R. Cohen D. ben-Avraham S. Havlin (2002) ArticleTitlePercolation critical exponents in scale-free networks Phys. Rev. E 66 036113

    Google Scholar 

  • A. V. Goltsev S. N. Dorogovtsev J. F. F. Mendes (2003) ArticleTitleCritical phenomena in networks Phys. Rev. E 67 026123

    Google Scholar 

  • C. Godrèche (2003) ArticleTitleDynamics of condensation in zero-range processes J. Phys. A: Math. Gen. 36 IssueID23 6313–6328 Occurrence Handle10.1088/0305-4470/36/23/303

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juha Merikoski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pulkkinen, O., Merikoski, J. Phase Transitions on Markovian Bipartite Graphs—an Application of the Zero-range Process. J Stat Phys 119, 881–907 (2005). https://doi.org/10.1007/s10955-005-3011-7

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-005-3011-7

Keywords

Navigation