Skip to main content
Log in

Increase and Decrease of the Effective Conductivity of Two Phase Composites due to Polydispersity

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We present a two-dimensional mathematical model of a composite material with conducting inclusions (fibers) embedded in a matrix. Our main objective is to study how polydispersity (two different sizes of particles) affects the overall conductivity of the composite. If the conductivity of inclusions is higher than the conductivity of the matrix, then previous studies suggest an increase of the effective conductivity due to polydispersity. We show that for high volume fraction when inclusions are not well-separated and percolation effects play a significant role, polydispersity may result in either an increase or decrease of the effective conductivity. Our proof is based on the method of functional equations and it provides sufficient conditions for both the increase and the decrease of the effective conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • M. Ablowitz and A. Fokas, Complex Variables (Cambridge University Press, 1997).

  • V. L. Berdichevskij (1983) Variational Principles of Continuum Mechanics Moscow Nauka

    Google Scholar 

  • D. J. Bergman K. J. Dunn (1992) Phys. Rev. Ser. B 45 13262–13271

    Google Scholar 

  • L. Berlyand V. Mityushev (2001) J. Stat. Phys. 102 IssueID(N1/2) 115–145

    Google Scholar 

  • L. Berlyand A. Kolpakov (2001) Arch. Rational Mech. Anal. 159 179–227

    Google Scholar 

  • L. Berlyand K. Golden (1994) Phys. Rev. B 50 2114–2117

    Google Scholar 

  • Ch. Chang R. L. Powell (1994) J. Rheol 38 85–98

    Google Scholar 

  • A. Dykhne (1971) JEPT 32 63–65

    Google Scholar 

  • V. V. Jikov S. M. Kozlov O. A. Olejnik (1994) Homogenization of Differential Operators and Integral Functionals Springer-Verlag Berlin

    Google Scholar 

  • F. D. Gakhov (1964) Boundary Value Problems Pergamon Press Oxford

    Google Scholar 

  • H. Goto H. Kuno (1984) J. Rheol 28 197–205

    Google Scholar 

  • A. Fannjiang G. Papanicolaou (1997) J. Stat. Phys. 88 1033–1076

    Google Scholar 

  • G. M. Golusin (1935) Matem. Sbornik 42 191–198

    Google Scholar 

  • R. F. Hill, in Proc. of Technical Program of SMTA National Symposium, ‘‘Emerging Packing Technologies.’’ Research Triangle Park, Noth Carolina, Nov. 18–21.

  • R. F. Hill P. H. Supancic (2002) J. Am. Cer. Soc. 85 851–857

    Google Scholar 

  • D. J. Jeffrey A. Acrivos (1976) AlChE J. 22 417–432

    Google Scholar 

  • J. B. Keller (1964) J. Math. Phys. 5 548–549

    Google Scholar 

  • Lord Rayleigh (1892) Phil. Mag. 34 481–502

    Google Scholar 

  • R. C. McPhedran D. R. McKenzie (1978) Proc. Roy. Soc. Lond. Ser. A. 59 45–52

    Google Scholar 

  • R. C. McPhedran (1986) Proc. Roy. Soc. Lond. Ser. A 408 31–43

    Google Scholar 

  • G. W. Milton, The Theory of Composites (Camdridge University Press, 2002).

  • V. Mityushev (1997) Demostratio Math 30 63–70

    Google Scholar 

  • V. Mityushev P. M. Adler (2002) ZAMM 82 335–345

    Google Scholar 

  • V. Mityushev P. M. Adler (2002) ZAMP 53 486–517

    Google Scholar 

  • V. Mityushev (2001) Appl. Math. Optim. 44 17–31

    Google Scholar 

  • V. Mityushev S. V. Rogosin (2000) Constructive Methods for Linear and Nonlinear Boundary Value Problems of the Analytic Functions Theory Chapman\Hall/CRC Boca Raton

    Google Scholar 

  • A. J. Poslinski M. E. Ryan R. K. Gupta S. G. Seshadri F. J. Frechette (1988) J. Rheology 32 751–771

    Google Scholar 

  • D. A. Robinson S. F. Friedman (2001) Water Res. Research 37 IssueIDN 1 33–40

    Google Scholar 

  • S. Torquato (2002) Random Heterogeneous Materials Springer NY etc.

    Google Scholar 

  • J. F. Thovert A. Acrivos (1989) Chem. Eng. Comm. 82 177–191

    Google Scholar 

  • J. F. Thovert I. C. Kim S. Torquato A. Acrivos (1990) J. Appl. Phys. 67 6088–6098

    Google Scholar 

  • A. Weil (1976) Elliptic Functions According to Eisenstein and Kronecker Springer-Verlag Berlin etc.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Berlyand.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berlyand, L., Mityushev, V. Increase and Decrease of the Effective Conductivity of Two Phase Composites due to Polydispersity. J Stat Phys 118, 481–509 (2005). https://doi.org/10.1007/s10955-004-8818-0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-004-8818-0

Keywords

Navigation