Skip to main content
Log in

Moments of the First Passage Time Under External Driving

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

A general theory is derived for the moments of the first passage time of a one-dimensional Markov process in the presence of a weak time-dependent forcing. The linear corrections to the moments can be expressed by quadratures of the potential and of the time-dependent probability density of the unperturbed system or equivalently by its Laplace transform. If none of the latter functions is known, the derived formulas may still be useful for specific cases including a slow driving or a driving with power at only small or large times. In the second part of the paper, explicit expressions for the mean and variance of the first passage time are derived for the cases of a linear or a parabolic potential and an exponentially decaying driving force. The analytical results are found to be in excellent agreement with computer simulations of the respective first-passage processes. The particular examples furthermore demonstrate that already the effect of a simple exponential driving can be fairly involved implying a nontrivial nonmonotonic behavior of mean and variance as functions of the driving’s time scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. L. Pontryagin, A. Andronov, and A. Witt, Zh.Eksp.Teor.Fiz., 3:172 (1933): Reprinted in Noise in Nonlinear Dynamical Systems, F. Moss and P. V. E. McClintock (eds) Vol. 1, (Cambridge University Press, Cambridge, 1989), p. 329.

    Google Scholar 

  2. A. J. F. Siegert, On the first passage time problem, Phys.Rev. 81:617 (1951).

    Google Scholar 

  3. M. Bier and R. D. Astumian, Matching a diffusive and a kinetic approach for escape over an fluctuating barrier, Phys.Rev.Lett. 71:1649 (1993).

    Google Scholar 

  4. C. R. Doering and J. C. Gadoua, Resonant activation over a fluctuating barrier, Phys.Rev.Lett. 16:2318 (1992).

    Google Scholar 

  5. P. Pechukas and P. H¨anggi, Rates of activated processes with fluctuating barriers, Phys.Rev.Lett. 73:2772 (1994).

    Google Scholar 

  6. P. Reimann, Thermally driven escape with fluctuating potentials: A new type of resonant activation, Phys.Rev.Lett. 74:4576 (1995).

    Google Scholar 

  7. L. Gammaitoni, P. H¨anggi, P. Jung, and F. Marchesoni, Stochastic resonance, Rev.Mod.Phys. 70:223 (1998).

    Google Scholar 

  8. J. E. Fletcher, S. Havlin, and G. H. Weiss, First passage time problems in time-dependent fields, J.Stat.Phys. 51:215 (1988).

    Google Scholar 

  9. M. Gitterman and G. H. Weiss, Coherent stochastic resonance in the presence of a field, Phys.Rev.E 52:5708 (1995).

    Google Scholar 

  10. J. Masoliver, A. Robinson, and G. H. Weiss, Coherent stochastic resonance, Phys.Rev.E 51:4021 (1995).

    Google Scholar 

  11. J. M. Porr´a, When coherent stochastic resonance appears, Phys.Rev.E 55:6533 (1997).

    Google Scholar 

  12. B. Lindner and A. Longtin, Nonrenewal spike trains generated by stochastic neuron models, in L. Schimansky-Geier, D. Abbott, A. Neiman, and Ch. Van den Broeck (eds) Noise in Complex Systems and Stochastic Dynamics, Vol 5114 (Bellingham, Washington, 2003), SPIE, p. 209.

  13. M. J. Chacron, A. Longtin, M. St-Hilaire, and L. Maler, Suprathreshold stochastic firing dynamics with memory in P-type electroreceptors, Phys.Rev.Lett. 85:1576 (2000).

    Google Scholar 

  14. M. J. Chacron, K. Pakdaman, and A. Longtin, Interspike interval correlations, memory, adaptation, and refractoriness in a leaky integrate-and-fire model with threshold fatigue, Neural Comp. 15:253 (2003).

    Google Scholar 

  15. A. Bulsara, T. C. Elston, Ch. R. Doering, S. B. Lowen, and K. Lindenberg, Cooperative behavior in periodically driven noisy integrate-and-fire models of neuronal dynamics, Phys.Rev.E 53:3958 (1996).

    Google Scholar 

  16. A. Bulsara, S. B. Lowen, and C. D. Rees, Cooperative behavior in the periodically modulated Wiener process: Noise-induced complexity in a model neuron, Phys.Rev.E 49:4989 (1994).

    Google Scholar 

  17. P. L´ansk´y, Sources of periodical force in noisy integrate-and-fire models of neuronal dynamics, Phys.Rev.E 55:2040 (1997).

    Google Scholar 

  18. H. E. Plesser and T. Geisel, Stochastic resonance in neuron models: Endogenous stimulation revisited, Phys.Rev.E 63:031916 (2001).

    Google Scholar 

  19. H. E. Plesser and S. Tanaka, Stochastic resonance in a model neuron with reset, Phys.Lett.A 225:228 (1997).

    Google Scholar 

  20. A. Longtin, Stochastic resonance in neuron models, J.Stat.Phys. 70:309 (1993).

    Google Scholar 

  21. V. Bezak, The first-passage-time problems with time-varying driving fields, Acta Phys.Slov. 39:337 (1989).

    Google Scholar 

  22. V. Balakrishnan, C. Van den Broeck, and P. H¨anggi, First-passage times of non-markovian processes:The case of a reflecting boundary, Phys.Rev.A 38:4213 (1988).

    Google Scholar 

  23. S. Redner, A Guide to First-Passage Processes. (Cambridge University Press, Cambridge, UK, 2001).

    Google Scholar 

  24. M. H. Choi and R. F. Fox, Evolution of escape processes with a time-varying load, Phys.Rev.E 66:031103 (2002).

    Google Scholar 

  25. S. V. G. Menon, First passage time distribution in an oscillating field, J.Stat.Phys. 66:1675 (1992).

    Google Scholar 

  26. I. Klik and Y. D. Yao, Resonant activation in a system with deterministic oscillations of barrier height, Phys.Rev.E 64:012101 (2001).

    Google Scholar 

  27. T. C. Elston and C. R. Doering, Numerical and analytical studies of nonequilibrium fluctuation-induced transport processes, J.Stat.Phys. 83:359 (1996).

    Google Scholar 

  28. R. Bartussek, P. Reimann, and P. H¨anggi, Precise numerics versus theory for correlation ratchets, Phys.Rev.Lett. 76:1176 (1996).

    Google Scholar 

  29. R. Guti´errez, L. M. Ricciardi, P. Rom´an, and F. Torres, First-passage-time densities for time-non-homogeneous diffusion processes, J.Appl.Prob. 34:623 (1997).

    Google Scholar 

  30. R. Guti´errez J´aimez, A. Juan Gonzalez, and P. TRom´an Rom´an, Construction of firstpassage-time densities for a diffusion process which is not necessarily time-homogeneous, J.Appl.Prob. 28:903 (1991).

    Google Scholar 

  31. R. Guti´errez J´aimez, P. Rom´an Rom´an, and F. Torres Ruiz, A note on the Volterra integral equation for the first-passage-time probability density, J.Appl.Prob. 32:635 (1995).

    Google Scholar 

  32. J. Lehmann, P. Reimann, and P. H¨anggi, Surmounting oscillating barriers, Phys.Rev.Lett. 84:1639 (2000).

    Google Scholar 

  33. V. N. Smelyanski, M. I. Dykman, and B. Golding, Time oscillations of escape rates in periodically driven systems, Phys.Rev.Lett. 82:3193 (1999).

    Google Scholar 

  34. P. Talkner and J. Luczka, Rate description of Fokker-Planck processes with time dependent parameters, cond-mat/0307498, (2003).

  35. A. I. Shushin, Effect of external force on the kinetics of diffusion-controlled escaping from a one-dimensional potential well, Phys.Rev.E 62:4688 (2000).

    Google Scholar 

  36. P. H¨anggi, P. Talkner, and M. Borkovec, Reaction rate theory: Fifty years after kramers, Rev.Mod.Phys. 62:251 (1990).

    Google Scholar 

  37. H. A. Kramers, Brownian motion in a field of force and the diffusion model of chemical reactions, Physica 7:284 (1940).

    Google Scholar 

  38. C. W. Gardiner, Handbook of Stochastic Methods, (Springer-Verlag, Berlin, 1985).

    Google Scholar 

  39. A. V. Holden, Models of the Stochastic Activity of Neurones, (Springer-Verlag, Berlin, 1976).

    Google Scholar 

  40. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, (Dover, New York, 1970).

    Google Scholar 

  41. N. G. Van Kampen, Short first-passage times, J.Stat.Phys. 70:15 (1993).

    Google Scholar 

  42. B. Lindner, L. Schimansky-Geier, and A. Longtin, Maximizing spike train coherence or incoherence in the leaky integrate-and-fire model, Phys.Rev.E 66:031916 (2002).

    Google Scholar 

  43. J. Honerkamp, Stochastic Dynamical Systems.Concepts, Numerical Methods, Data Analysis, (Wiley/VCH, Weinheim, 1993).

    Google Scholar 

  44. K. Pakdaman, S. Tanabe, and T. Shimokawa, Coherence resonance and discharge reliability in neurons and neuronal models, Neural Networks 14:895 (2001).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lindner, B. Moments of the First Passage Time Under External Driving. Journal of Statistical Physics 117, 703–737 (2004). https://doi.org/10.1007/s10955-004-2269-5

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-004-2269-5

Navigation