Skip to main content
Log in

Investigation of Stability and Hydrodynamics of Different Lattice Boltzmann Models

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Stability and hydrodynamic behaviors of different lattice Boltzmann models including the lattice Boltzmann equation (LBE), the differential lattice Boltzmann equation (DLBE), the interpolation-supplemented lattice Boltzmann method (ISLBM) and the Taylor series expansion- and least square-based lattice Boltzmann method (TLLBM) are studied in detail. Our work is based on the von Neumann linearized stability analysis under a uniform flow condition. The local stability and hydrodynamic (dissipation) behaviors are studied by solving the evolution operator of the linearized lattice Boltzmann equations numerically. Our investigation shows that the LBE schemes with interpolations, such as DLBE, ISLBM and TLLBM, improve the numerical stability by increasing hyper-viscosities at large wave numbers (small scales). It was found that these interpolated LBE schemes with the upwind interpolations are more stable than those with central interpolations because of much larger hyper-viscosities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. U. Frisch, B. Hasslacher, and Y. Pomeau, Lattice-gas automata for the Navier-Stokes equations, Phys.Rev.Lett. 56:1505 (1986).

    Google Scholar 

  2. G. D. Doolen. Lattice Gas Methods for Partial Differential Equations, (Addison-Wesley, MA, 1989).

  3. R. Mei and W. Shyy, On the finite difference-based lattice Boltzmann method in curvilinear coordinates, J.Comp.Phys. 134:306 (1997).

    Google Scholar 

  4. X. He, L-S. Luo, and M. Dembo, Some progress in lattice Boltzmann method. Part I: non-uniform mesh grids, J.Comp.Phys. 129:357 (1996).

    Google Scholar 

  5. C. Shu, Y. T. Chew, and X. D. Niu, Least-square-based lattice Boltzmann method: a meshless approach for simulation of flows with complex geometry, Phys.Rev.E 64:045701 (R) (2001).

    Google Scholar 

  6. Y. T. Chew, C. Shu, and X. D. Niu, A new differential lattice Boltzmann equation and its application to simulate incompressible flows on non-uniform grids, J.Stat.Phys. 107 (1/2):329 (2002).

    Google Scholar 

  7. X. He and L-S. Luo, Theory of the lattice Boltzmann method: From the Boltzmann equation to the lattice Boltzmann equation, Phys.Rev.E 56:6811 (1997).

    Google Scholar 

  8. T. Abe, Derivation of the lattice Boltzmann method by means of the discrete ordinate method for the Boltzmann equation, J.Comp.Phys. 131:241 (1997).

    Google Scholar 

  9. S. Chen and G. D. Doolen, Lattice Boltzmann method for fluid flows, Ann.Rev.Fluid Mech. 30:329 (1998).

    Google Scholar 

  10. J. D. Sterling and S. Chen, “Stability analysis of the lattice Boltzmann methods”, J.Comp.Phys. 123:196 (1996).

    Google Scholar 

  11. W.-A. Yong and L-S. Luo, “Nonexistence of Htheorems for the athermal lattice Boltzmann models with polynomial equilibria”, Phys.Rev.E 67:051105 (2003).

    Google Scholar 

  12. G. R. McNamara and G. Zanetti, Use of the Boltzmann equation to simulate latticegas automata, Phys.Rev.Lett. 61:2332 (1988).

    Google Scholar 

  13. H. Chen, S. Chen, and W. H. Matthaeus, Recovery of the Navier-Stokes equations using lattice-gas Boltzmann method, Phys.Rev.A 45:5339 (1992).

    Google Scholar 

  14. S. Chen, Z. Wang, X. Shan, and G. D. Doolen, Lattice Boltzmann computational fluid dynamics in three dimensions, J.Stat.Phys. 68:379 (1992).

    Google Scholar 

  15. R. A. Worthing, J. Mozer, and G. Seeley, Stability of lattice Boltzmann methods in hydrodynamic regimes, Phys.Rev.E 56:2243 (1997).

    Google Scholar 

  16. O. Behrend, R. Harris, and P. B. Warren, Hydrodynamic behavior of lattice Boltzmann and lattice Bhatnagar-Gross-Krook models, Phys.Rev.E 50:4586 (1994).

    Google Scholar 

  17. P. Lallemand and L.-S. Luo, Theory of the lattice Boltzmann method: Dissipation, Isotropy, Galilean invariance, and stability, Phys.Rev.E 61:6546 (2000).

    Google Scholar 

  18. P. Lallemand and L.-S. Luo, Theory of the lattice Boltzmann method: Acoustic and thermal properties in two and three dimensions, Phys.Rev.E 68:036706 (2003).

    Google Scholar 

  19. S. Succi, G. Amati, and R. Benzi, Challenges in lattice Boltzmann computating, J.Stat.Phys. 81(1/2):5 (1995).

    Google Scholar 

  20. X. He and L.-S. Luo, A priori derivation of the lattice Boltzmann equation, Phys.Rev.E 55:6333 (1997).

    Google Scholar 

  21. L. F. Shampine, Numerical Solution of Ordinary Differential Equations (Chapman & Hall, Newyork, 1994).

    Google Scholar 

  22. J. L. Buchanan and P. R Turner, Numerical Methods and Analysis, (McGraw-Hill, New York, 1992).

    Google Scholar 

  23. K. A. Hoffman and S. T. Chiang, Computational Fluid Dynamics, 3rd ed, (Engineering Education System, Wichita, Kansas, 1998).

  24. S. P. Das, H. J. Bussemaker and M. H. Ernst, “Generalized hydrodynamics and dispersion relations in lattice gases”, Phys.Rev.E 48:245 (1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Niu, X.D., Shu, C., Chew, Y.T. et al. Investigation of Stability and Hydrodynamics of Different Lattice Boltzmann Models. Journal of Statistical Physics 117, 665–680 (2004). https://doi.org/10.1007/s10955-004-2264-x

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-004-2264-x

Navigation