Skip to main content
Log in

Thermodynamic Models for Correlation of Solubility of Hexaquocobalt(II) Bis(p-toluenesulfonate) in Liquid Mixtures of Water and Ethanol from 288.15 to 333.15 K

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

A Commentary to this article was published on 18 February 2017

Abstract

The solubilities of hexaquocobalt(II) bis(p -toluenesulfonate) [Co(OTs)2·6H2O] in water and ethanol mixed solvents with ethanol mole fractions of 0–0.342 were determined from 288.15 to 333.15 K by a synthetic method. The generated data were well correlated with the modified Apelblat equation, the Redlich–Kister (CNIBS/R–K) model, and the hybrid model in which the mean deviations are less than 3.06 %. Materials Studio DMol 3 (Accelrys Software Inc.) was chosen to investigate the molecular modeling. The results indicated that the increase of solubility of Co(OTs)2·6H2O with increase of the initial mole fraction of ethanol (x 2) is due to stronger interactions occurring between ethanol and Co(OTs)2·6H2O. Moreover, this tends to level out when x 2 is greater than 0.228 because some new clusters will be formed by the water and ethanol molecules in the binary mixture. The modified van’t Hoff equation was adopted to analyze the enthalpy, entropy, and Gibbs energy, indicating the dissolution process of Co(OTs)2·6H2O in mixed solvents is endothermic, spontaneous, and entropy driven.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Holmes, S.M., Mckinley, S.G., Girolami, G.S., Szalay, P.S., Dunbar, K.R.: Transition metal p-toluenesulfonates. Inorg. Synth. 33, 91–103 (2002)

    CAS  Google Scholar 

  2. Winter, S., Seichter, W., Weber, E.: Syntheses and crystal structures of cobalt and nickel complexes of 2,6-bis(hydroxymethyl) pyridine. J. Coord. Chem. 57, 997–1014 (2004)

    Article  CAS  Google Scholar 

  3. Withers, J.R., Ruschmann, C., Bojang, P., Parkin, S., Holmes, S.M.: Synthesis and structural characterization of bi- and trimetallic octacyanometalate(IV) complexes:[Δ,Λ-MII(en)3][cis-MII(en)2(OH2)][MIV(CN)8]·2H2O and [cis-MII(en)2 (OH2)]2[(μ-NC)2MIV(CN)6]·4H2O (MII = Mn Co, Ni; MIV = Mo, W). Inorg. Chem. 44, 352–358 (2005)

    Article  CAS  Google Scholar 

  4. Agarwal, U.S., Venkatarishnan, B.V., Jalan, R., Sreekumar, T.V., Ayodhya, S.R., Jain, A.K., Jadimath, S.P., Sudan, P., KelKar, A.G.: Oxygen-scavenging polyesters. US Patent 20140193629 A1 (2014)

  5. Agarwal, U.S., Venkatakrishnan, B.V., Jadimath, S.P., Ayodhya, S.R.: Oxygen scavenging packaging articles. WO Patent 2013061333 A2 (2013)

  6. Noubigh, A., Aydi, A., Abderrabba, M.: Experimental measurement and correlation of solubility data and thermodynamic properties of protocatechuic acid in four organic solvents. J. Chem. Eng. Data 60, 514–518 (2015)

    Article  CAS  Google Scholar 

  7. Jouyban-Gharamaleki, V., Jouyban-Gharamaleki, K., Soleymani, J., Acree, W.E., Jouyban, A.: Solubility determination of tris(hydroxymethyl)aminomethane in water + methanol mixtures at various temperatures using a laser monitoring technique. J. Chem. Eng. Data 59, 2305–2309 (2014)

    Article  CAS  Google Scholar 

  8. Hu, Y.H., Liu, X., Yang, W.G., Yin, J.J., Liu, Y., Liang, M.M.: Measurement and correlation of the solubility of 4-methylbenzoic acid in (methanol + acetic acid) binary solvent mixtures. J. Mol. Liq. 193, 213–219 (2014)

    Article  CAS  Google Scholar 

  9. Yang, W.G., Jiang, X.M., Hu, Y.H., Shi, Y., Sun, H.L., Li, Y.L.: Solubility of fumaric acid in aqueous alcohol solutions. J. Solution Chem. 42, 1591–1601 (2013)

    Article  CAS  Google Scholar 

  10. Kim, K.J., Kim, H.S., Sim, J.S.: Solubilities of octahydro-1,3,5,7-tetranitro- 1,3,5,7-tetrazocine in γ-butyrolactone + water, dimethylsulfoxide + water, and N-methyl pyrrolidone + water. J. Chem. Eng. Data 58, 2410–2413 (2013)

    Article  CAS  Google Scholar 

  11. Haq, N., Alanazi, F.K., Alsarra, I.A., Shakeel, F.: Solubility of gliclazide in transcutol + water co-solvent mixtures at (298.15 to 333.15) K. Croat. Chem. Acta 87, 255–260 (2014)

    Article  Google Scholar 

  12. Yu, C., Zeng, Z.X., Xue, W.L.: Measurement and correlation of the solubility of hexaquonickel(II)bis(p-toluenesulfonate) in water + ethanol solvents within 288.15–333.15 K. Ind. Eng. Chem. Res. 54, 3961–3967 (2015)

    Article  CAS  Google Scholar 

  13. Chen, J., Zeng, Z.X., Xue, W.L., Wang, D., Huan, Y.: Determination and correlation of solubility of decahydropyrazino [2,3-b]pyrazine] in methanol, ethanol, and 2-propanol. Ind. Eng. Chem. Res. 50, 11755–11762 (2011)

    Article  CAS  Google Scholar 

  14. Zhang, J.L., Yang, X.Z., Han, Y., Li, W., Wang, J.K.: Measurement and correlation for solubility of levofloxacin in six solvents at temperatures from 288.15 to 328.15 K. Fluid Phase Equilibr. 335, 1–7 (2012)

    Article  CAS  Google Scholar 

  15. Zhang, H., Yin, Q.X., Liu, Z.K., Gong, J.B., Bao, Y., Zhang, M.J., Hao, H.X., Hou, B.H., Xie, C.: Measurement and correlation of solubility of dodecanedioic acid in different pure solvents from T = (288.15 to 323.15) K. J. Chem. Thermodyn. 68, 270–274 (2014)

    Article  CAS  Google Scholar 

  16. Delley, B.: An allelectron numerical method for solving the local density functional for polyatomic molecules. J. Chem. Phys. 92, 508–517 (1990)

    Article  CAS  Google Scholar 

  17. Delley, B.: Fast calculation of electrostatics in crystals and large molecules. J. Phys. Chem. 100, 6107–6110 (1996)

    Article  CAS  Google Scholar 

  18. Delley, B.: From molecules to solids with the DMol3 approach. J. Chem. Phys. 113, 7756–7764 (2000)

    Article  CAS  Google Scholar 

  19. Becke, A.D.: A multicenter numerical integration scheme for polyatomic molecules. J. Chem. Phys. 88, 2547–2549 (1988)

    Article  CAS  Google Scholar 

  20. Lee, C., Yang, W., Parr, R.G.: Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 786–789 (1988)

    Google Scholar 

  21. Ma, Q.M., Xie, Z., Wang, J., Liu, Y., Li, Y.C.: Structures, stabilities and magnetic properties of small Co clusters. Phys. Lett. A 358, 289–296 (2006)

    Article  CAS  Google Scholar 

  22. Xie, Z., Ma, Q.M., Liu, Y., Li, Y.C.: First-principles study of the stability and Jahn-Teller distortion of nickel clusters. Phys. Lett. A 342, 459–467 (2005)

    Article  CAS  Google Scholar 

  23. Apelblat, A., Manzurola, E.: Solubilities of o-acetylsalicylic, 4-aminosalicylic, 3,5-dinitrosalicylic, and p-toluic acid, and magnesium-DL-aspartate in water from T = (278 to 348) K. J. Chem. Thermodyn. 31, 85–91 (1999)

    Article  CAS  Google Scholar 

  24. Apelblat, A., Manzurola, E.: Solubilities of manganese, cadmium, mercury and lead acetates in water from T = 278.15 K to T = 340.15 K. J. Chem. Thermodyn. 33, 147–153 (2001)

    Article  CAS  Google Scholar 

  25. Luan, Q.H., Wang, Y.L., Wang, G., Yang, J.X., Hao, H.X.: Measurement and correlation of solubility of calcium-L-lactate pentahydrate in ethanol + water and acetone + water systems. J. Chem. Eng. Data 59, 2642–2648 (2014)

    Article  CAS  Google Scholar 

  26. Jouyban-Gharamaleki, A., Acree, W.E.: Comparison of models for describing multiple peaks in solubility profiles. Int. J. Pharm. 167, 177–182 (1998)

    Article  CAS  Google Scholar 

  27. Zhou, Z.M., Qu, Y.X., Wang, J.D., Wang, S., Liu, J.S., Wu, M.: Measurement and correlation of solubilities of (Z)-2-(2-aminothiazol-4-yl)-2-methoxyiminoacetic acid in different pure solvents and binary mixtures of water + (ethanol, methanol, or glycol). J. Chem. Eng. Data 56, 1622–1628 (2011)

    Article  CAS  Google Scholar 

  28. Liu, Y., Luo, X.S., Shen, Z.H., Lu, J., Ni, X.W.: Studies on molecular structure of ethanol–water clusters by fluorescence spectroscopy. Opt. Rev. 13, 303–307 (2006)

    Article  CAS  Google Scholar 

  29. Su, J.H., Qian, C., Luo, N.Z., Xiang, X.G., Xu, Y.M., Chen, X.Z.: Experimental measurement and modeling of the solubility of biotin in six pure solvents at temperatures from 298.15 K to 333.85 K. J. Chem. Eng. Data 59, 3894–3899 (2014)

    Article  CAS  Google Scholar 

  30. Krug, R.R., Hunter, W.G., Grieger, R.A.: Enthalpy–entropy compensation. 2. Separation of the chemical from the statistical effect. J. Phys. Chem. 80, 2341–2351 (1976)

    Article  CAS  Google Scholar 

  31. Yang, P.P., Wen, Q.S., Wu, J.L., Zhuang, W., Zhang, Y.H., Ying, H.J.: Determination of solubility of cAMPNa in water + (ethanol, methanol, and acetone) within 293.15–313.15 K. Ind. Eng. Chem. Res. 53, 10803–10809 (2014)

    Article  CAS  Google Scholar 

  32. Fang, J., Zhang, M.J., Zhu, P.P., Ouyang, J.B., Gong, J.B., Chen, W., Xu, F.X.: Solubility and solution thermodynamics of sorbic acid in eight pure organic solvents. J. Chem. Thermodyn. 85, 202–209 (2015)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zuoxiang Zeng.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 21 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, C., Huang, Z., Zeng, Z. et al. Thermodynamic Models for Correlation of Solubility of Hexaquocobalt(II) Bis(p-toluenesulfonate) in Liquid Mixtures of Water and Ethanol from 288.15 to 333.15 K. J Solution Chem 45, 395–409 (2016). https://doi.org/10.1007/s10953-016-0443-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-016-0443-4

Keywords

Navigation