Skip to main content
Log in

Effect of Rotational Couplings on Vibrational Spectrum Line Shape of the Bending Mode in Low-Density Supercritical Water: Density and Hydrogen Isotopes Dependencies

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The effect of rotations on the line shape of the bending vibrational spectrum for supercritical water was analyzed using classical molecular dynamics simulation for the flexible point-charge SPC/Fw model. The experimental infrared spectrum of the bending mode at the low densities of 0.01–0.04 g·cm−3 and at 400 °C was essentially reproduced without any other assumptions. The spectrum line shape at low densities consists of two broad rotational bands due to the rotational couplings, as in the case of the O–H stretch mode. This is due to the time-scale separation breakdown but is not due to the presence of any definite clusters. The rotational couplings become more significant at higher temperatures. The separations between the bending band center and the rotational broad side-bands are found to be linearly correlated with the inverse of the total moment of inertia of the water isotopic species, which is clear molecular-level evidence for the rotational couplings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Franck, E.U., Roth, K.: Infra-red absorption of HDO in water at high pressures and temperatures. Discuss. Faraday Soc. 43, 108–114 (1967)

    Article  Google Scholar 

  2. Bondarenko, G.V., Gorbaty, Y.E.: An infrared study of water vapour in the temperature range 573–723 K. Dimerization enthalpy and absorption intensities for monomer and dimer. Mol. Phys. 74, 639–647 (1991)

    Article  CAS  Google Scholar 

  3. Tassaing, T., Danten, Y., Besnard, M.: Infrared spectroscopic study of hydrogen-bonding in water at high temperature and pressure. J. Mol. Liq. 101, 149–158 (2002)

    Article  CAS  Google Scholar 

  4. Schwarzer, D., Lindner, J., Vohringer, P.: OH-stretch vibrational relaxation of HOD in liquid to supercritical D2O. J. Phys. Chem. A 110, 2858–2867 (2006)

    Article  CAS  Google Scholar 

  5. Vigasin, A.A., Jin, Y., Ikawa, S.: On the water dimer contribution to the OH stretching absorption band profile in pressurized water vapour. Mol. Phys. 106, 1155–1159 (2008)

  6. Kandratsenka, A., Schwarzer, D., Vohringer, P.: Relating linear vibrational spectroscopy to condensed-phase hydrogen-bonded structures: liquid-to-supercritical water. J. Chem. Phys. 128, 244510 (2008)

    Article  Google Scholar 

  7. Schafer, T., Lindner, J., Vohringer, P., Schwarzer, D.: OD stretch vibrational relaxation of HOD in liquid to supercritical H2O. J. Chem. Phys. 130, 224502 (2009)

    Article  Google Scholar 

  8. Kohl, W., Lindner, H.A., Franck, E.U.: Raman spectra of water to 400 °C and 3000 bar. Ber. Bunsen-Ges. Phys. Chem. 95, 1586–1593 (1991)

    Article  CAS  Google Scholar 

  9. Frantz, J.D., Dubessy, J., Mysen, B.: An optical cell for Raman spectroscopic studies of supercritical fluids and its application to the study of water to 500 °C and 2000 bar. Chem. Geol. 106, 9–26 (1993)

    Article  CAS  Google Scholar 

  10. Walrafen, G.E., Chu, Y.C.: Linearity between structural correlation length and correlated-proton Raman intensity from amorphous ice and supercooled water up to dense supercritical steam. J. Phys. Chem. 99, 11225–11229 (1995)

    Article  CAS  Google Scholar 

  11. Walrafen, G.E., Chu, Y.C., Piermarini, G.J.: Low-frequency Raman scattering from water at high pressures and high temperatures. J. Phys. Chem. 100, 10363–10372 (1996)

    Article  CAS  Google Scholar 

  12. Carey, D.M., Korenowski, G.M.: Measurement of the Raman spectrum of liquid water. J. Chem. Phys. 108, 2669–2675 (1998)

    Article  CAS  Google Scholar 

  13. Ikushima, Y., Hatakeda, K., Saito, N., Arai, M.: An in situ Raman spectroscopy study of subcritical and supercritical water: the peculiarity of hydrogen bonding near the critical point. J. Chem. Phys. 108, 5855–5860 (1998)

    Article  CAS  Google Scholar 

  14. Ricci, M.A., Nardone, M., Fontana, A., Andreani, C., Hahn, W.: Light and neutron scattering studies of the OH stretching band in liquid and supercritical water. J. Chem. Phys. 108, 450–454 (1998)

    Article  CAS  Google Scholar 

  15. Walrafen, G.E., Yang, W., Chu, Y.C.: Raman spectra from saturated water vapor to the supercritical fluid. J. Phys. Chem. B 103, 1332–1338 (1999)

    Article  CAS  Google Scholar 

  16. Tominaga, Y., Amo, Y.: The first observation of low-frequency Raman spectra of supercritical water. J. Phys. Soc. Jpn. 75, 023801 (2006)

    Article  Google Scholar 

  17. Yasaka, Y., Kubo, M., Matubayasi, N., Nakahara, M.: High-sensitivity Raman spectroscopy of supercritical water and methanol over a wide range of density. Bull. Chem. Soc. Jpn 80, 1764–1769 (2007)

    Article  CAS  Google Scholar 

  18. Yui, K., Uchida, H., Itatani, K., Koda, S.: Raman OH stretching frequency shifts in supercritical water and in O2- and acetone–aqueous solutions near the water critical point. Chem. Phys. Lett. 477, 85–89 (2009)

    Article  CAS  Google Scholar 

  19. Wilbur, D.J., DeFries, T., Jonas, J.: Self-diffusion in compressed liquid heavy water. J. Chem. Phys. 65, 1783–1786 (1976)

    Article  CAS  Google Scholar 

  20. Lamb, W.J., Hoffman, G.A., Jonas, J.: Self-diffusion in compressed supercritical water. J. Chem. Phys. 74, 6875–6880 (1981)

    Article  CAS  Google Scholar 

  21. Yoshida, K., Wakai, C., Matubayasi, N., Nakahara, M.: A new high-temperature multinuclear-magnetic-resonance probe and the self-diffusion of light and heavy water in sub- and supercritical conditions. J. Chem. Phys. 123, 164506 (2005)

    Article  Google Scholar 

  22. Yoshida, K., Matubayasi, N., Nakahara, M.: Self-diffusion of supercritical water in extremely low-density region. J. Chem. Phys. 125, 074307 (2006)

    Article  Google Scholar 

  23. Yoshida, K., Matubayasi, N., Nakahara, M.: Self-diffusion coefficients for water and organic solvents at high temperatures along the coexistence curve. J. Chem. Phys. 129, 214501 (2008)

    Article  Google Scholar 

  24. Yoshida, K., Matubayasi, N., Nakahara, M.: Self-diffusion coefficients for water and organic solvents in extremely low-density supercritical states. J. Mol. Liq. 147, 96–101 (2009)

    Article  CAS  Google Scholar 

  25. Yoshida, K., Matubayasi, N., Nakahara, M.: Scaled polynomial expression for self-diffusion coefficients for water, benzene, and cyclohexane over a wide range of temperatures and densities. J. Chem. Eng. Data 55, 2815–2823 (2010)

    Article  CAS  Google Scholar 

  26. Yoshida, K., Matubayasi, N., Uosaki, Y., Nakahara, M.: Density effect on infrared spectrum for supercritical water in the low- and medium-density region studied by molecular dynamics simulation. J. Chem. Phys. 137, 194506 (2012)

    Article  Google Scholar 

  27. Yoshida, K., Matubayasi, N., Uosaki, Y., Nakahara, M.: Effect of heavy hydrogen isotopes on the vibrational line shape for supercritical water through rotational couplings. J. Chem. Phys. 138, 134508 (2013)

    Article  Google Scholar 

  28. Silvestrelli, P.L., Bernasconi, M., Parrinello, M.: Ab initio infrared spectrum of liquid water. Chem. Phys. Lett. 277, 478–482 (1997)

    Article  CAS  Google Scholar 

  29. Zhang, C., Donadio, D., Gygi, F., Galli, G.: First principles simulations of the infrared spectrum of liquid water using hybrid density functionals. J. Chem. Theory Comput. 7, 1443–1449 (2011)

    Article  CAS  Google Scholar 

  30. Paesani, F., Xantheas, S.S., Voth, G.A.: Infrared spectroscopy and hydrogen-bond dynamics of liquid water from centroid molecular dynamics with an ab initio-based force field. J. Phys. Chem. B 113, 13118–13130 (2009)

    Article  CAS  Google Scholar 

  31. Torii, H.: Time-domain calculations of the polarized Raman spectra, the transient infrared absorption anisotropy, and the extent of delocalization of the OH stretching mode of liquid water. J. Phys. Chem. A 110, 9469–9477 (2006)

    Article  CAS  Google Scholar 

  32. Auer, B.M., Skinner, J.L.: IR and Raman spectra of liquid water: theory and interpretation. J. Chem. Phys. 128, 224511 (2008)

    Article  CAS  Google Scholar 

  33. Bakker, H.J., Skinner, J.L.: Vibrational spectroscopy as a probe of structure and dynamics in liquid water. Chem. Rev. 110, 1498–1517 (2010)

    Article  CAS  Google Scholar 

  34. Wu, Y., Tepper, H.L., Voth, G.A.: Flexible simple point-charge water model with improved liquid-state properties. J. Chem. Phys. 124, 024503 (2006)

    Article  Google Scholar 

  35. Van, D.D., Lindahl, E., Hess, B., Groenhof, G., Mark, A.E., Berendsen, H.J.: GROMACS: fast, flexible, and free. J. Comput. Chem. 26, 1701–1718 (2005)

    Article  Google Scholar 

  36. Hess, B., Kutzner, C., Van, D.D., Lindahl, E.: GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation. J. Chem. Theory Comput. 4, 435–447 (2008)

    Article  CAS  Google Scholar 

  37. Guillot, B.: A molecular dynamics study of the far infrared spectrum of liquid water. J. Chem. Phys. 95, 1543–1551 (1991)

    Article  CAS  Google Scholar 

  38. McQuarrie, D.A.: Statistical Mechanics. Harper and Row, New York (1976)

    Google Scholar 

  39. Skinner, J.L., Auer, B.M., Lin, Y.: Vibrational line shapes, spectral diffusion, and hydrogen bonding in liquid water. Adv. Chem. Phys. 142, 59–103 (2009)

    CAS  Google Scholar 

  40. Flanagin, L.W., Balbuena, P.B., Johnston, K.P., Rossky, P.J.: Temperature and density effects on an SN2 reaction in supercritical water. J. Phys. Chem. 99, 5196–5205 (1995)

    Article  CAS  Google Scholar 

  41. Matubayasi, N., Wakai, C., Nakahara, M.: Structural study of supercritical water. I. Nuclear magnetic resonance spectroscopy. J. Chem. Phys. 107, 9133–9140 (1997)

    Article  CAS  Google Scholar 

  42. Mountain, R.D.: Voids and clusters in expanded water. J. Chem. Phys. 110, 2109–2115 (1999)

    Article  CAS  Google Scholar 

  43. Matubayasi, N., Wakai, C., Nakahara, M.: Structural study of supercritical water. II. Computer simulations. J. Chem. Phys. 110, 8000–8011 (1999)

    Article  CAS  Google Scholar 

  44. Guillot, B., Guissani, Y.: How to build a better pair potential for water. J. Chem. Phys. 114, 6720–6733 (2001)

    Article  CAS  Google Scholar 

  45. Vigasin, A.A.: On the possibility to quantify contributions from true bound and metastable pairs to infrared absorption in pressurised water vapour. Mol. Phys. 108, 2309–2313 (2010)

  46. Begue, D., Baraille, I., Garrain, P.A., Dargelos, A., Tassaing, T.: Calculation of IR frequencies and intensities in electrical and mechanical anharmonicity approximations: application to small water clusters. J. Chem. Phys. 133, 034102 (2010)

    Article  CAS  Google Scholar 

  47. Bordat, P., Bégué, D., Brown, R., Marbeuf, A., Cardy, H., Baraille, I.: The IR spectrum of supercritical water: combined molecular dynamics/quantum mechanics strategy and force field for cluster sampling. Int. J. Quantum Chem. 112, 2578–2584 (2012)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the Grants-in-Aid for Scientific Research (Nos. 21300111, 21850021, 23651202, and 25410019) from the Japan Society for the Promotion of Science, by the Grant-in-Aid for Scientific Research on Innovative Areas (No. 20118002) and the Elements Strategy Initiative for Catalysts & Batteries from the Ministry of Education, Culture, Sports, Science, and Technology, and by the Computational Materials Science Initiative and the Strategic Programs for Innovative Research of the Next-Generation Supercomputing Project. K.Y. is grateful for the donations from the Suzuki Foundation, the Salt Science Research Foundation, No. 1114, JGC-S Scholarship Foundation, and SEI group CSR foundation. M.N. is grateful to AGC, Limited for the financial support. Numerical calculations for the present work were carried out using Research Center for Computational Science, Okazaki, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ken Yoshida.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoshida, K., Matubayasi, N., Uosaki, Y. et al. Effect of Rotational Couplings on Vibrational Spectrum Line Shape of the Bending Mode in Low-Density Supercritical Water: Density and Hydrogen Isotopes Dependencies. J Solution Chem 43, 1499–1508 (2014). https://doi.org/10.1007/s10953-014-0220-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-014-0220-1

Keywords

Navigation