Skip to main content
Log in

Studies on Bubble Column Evaporation in Various Salt Solutions

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The physical properties of concentrated salt solutions are an important aspect of many industrial processes. The effects of different salts on the inhibition of bubble coalescence have raised some unexpected observations, because some salts inhibit coalescence while others have no effect over a wide concentration range. Fortunately, many common salts inhibit bubble coalescence and although the mechanism is not fully understood, this effect allows the construction of bubble column evaporators (BCEs) for the efficient transfer of both vapor and heat. In this study the BCE process has been used under steady state conditions to determine the latent heat (enthalpy) of vaporization (ΔH vap) of concentrated solutions of several common salts. In addition, it was found that under non-steady state conditions using high inlet gas temperatures, the rate of vapor transfer, and hence thermal desalination, could be increased using the BCE process. Some new observations on the fundamental mechanism of the bubble coalescence phenomenon are also reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Grover, G.S., Eisa, M.A.R., Holland, F.A.: Thermodynamic design data for absorption heat pump systems operating on water–lithium chloride—part one. Cool. Heat. Recover. Syst. CHP 8, 33–41 (1988)

    Article  CAS  Google Scholar 

  2. Patil, K.R., Kim, M.N., Eisa, M.A.R., Holland, F.A.: Experimental evaluation of aqueous lithium halides as single- and double-salt systems in absorption heat-pumps. Appl. Energy 34(2), 99–111 (1989)

    Article  CAS  Google Scholar 

  3. Mandani, F., Ettouney, H., El-Dessouky, H.: LiBr–H2O absorption heat pump for single-effect evaporation desalination process. Desalination 128, 161–176 (2000)

    Article  CAS  Google Scholar 

  4. Post, J.W., Veerman, J., Hamelers, H.V., Euverink, G.J., Metz, S.J., Nymeijer, K., Buisman, C.J.: Salinity-gradient power: evaluation of pressure-retarded osmosis and reverse electrodialysis. J. Membr. Sci. 288, 218–230 (2007)

    Article  CAS  Google Scholar 

  5. Achilli, A., Cath, T.Y., Childress, A.E.: Power generation with pressure retarded osmosis: an experimental and theoretical investigation. J. Membr. Sci. 343, 42–52 (2009)

    Article  CAS  Google Scholar 

  6. Cath, T.Y., Childress, A.E., Elimelech, M.: Forward osmosis: principles, applications, and recent developments. J. Membr. Sci. 281, 70–87 (2006)

    Article  CAS  Google Scholar 

  7. McGinnis, R.L., Elimelech, M.: Energy requirements of ammonia–carbon dioxide forward osmosis desalination. Desalination 207, 370–382 (2007)

    Article  CAS  Google Scholar 

  8. Craig, V., Ninham, B., Pashley, R.: Effect of electrolytes on bubble coalescence. Nature 364(6435), 317–319 (1993)

    Article  CAS  Google Scholar 

  9. Leifer, I., Patro, R.K., Bowyer, P.: A study on the temperature variation of rise velocity for large clean bubbles. J. Atmos. Ocean. Technol. 17, 1392–1402 (2000)

    Article  Google Scholar 

  10. Francis, M., Pashley, R.: Application of a bubble column for evaporative cooling and a simple procedure for determining the latent heat of vaporization of aqueous salt solutions. J. Phys. Chem. B 113, 9311–9315 (2009)

    Article  CAS  Google Scholar 

  11. Atkins, R.C.: Evaporative Cooling System for Buildings. USA patent US5146762 (1992)

  12. Shahid, M., Pashley, R., Mohklesur, R.A.: Use of a high density, low temperature, bubble column for thermally efficient water sterilization. Desalin. Water Treat. 52(22–24), 4444–4452 (2014)

  13. Francis, M., Pashley, R.: Thermal desalination using a non-boiling bubble column. Desalin. Water Treat. 12(1–3), 155–161 (2009)

    Article  CAS  Google Scholar 

  14. Klassen, V.I., Mokrousov, V.A.: An Introduction to the Theory of Flotation. Butterworths, London (1963)

    Google Scholar 

  15. Craig, V.S.: Bubble coalescence and specific-ion effects. Curr. Opin. Colloid Interface Sci. 9, 178–184 (2004)

    Article  CAS  Google Scholar 

  16. Craig, V.S.: Do hydration forces play a role in thin film drainage and rupture observed in electrolyte solutions? Curr. Opin. Colloid Interface Sci. 16, 597–600 (2011)

    Article  CAS  Google Scholar 

  17. Horn, R.G., Del Castillo, L.A., Ohnishi, S.: Coalescence map for bubbles in surfactant-free aqueous electrolyte solutions. Adv. Colloid Interface Sci. 168(1), 85–92 (2011)

    Article  CAS  Google Scholar 

  18. Browne, C., Tabor, R.F., Chan, D.Y., Dagastine, R.R., Ashokkumar, M., Grieser, F.: Bubble coalescence during acoustic cavitation in aqueous electrolyte solutions. Langmuir 27, 12025–12032 (2011)

    Article  CAS  Google Scholar 

  19. Al-Shorachi, H.N., Hashim, E.T.: Prediction of the heat of vaporization from the heat of vaporization at normal boiling point. Pet. Sci. Technol. 25, 1527–1530 (2007)

    Article  CAS  Google Scholar 

  20. Fish, L.W., Lielmezs, J.: General method for predicting the latent heat of vaporization. Ind. Eng. Chem. Fundam. 14, 248–256 (1975)

    Article  CAS  Google Scholar 

  21. Godts, P., Dupont, D., Leclercq, D.: Direct measurement of the latent heat of evaporation by flowmetric method. Instrum. Meas. IEEE Trans. 54, 2364–2369 (2005)

    Article  Google Scholar 

  22. Kuwairi, B., Maddox, R.N.: Generalized method for calculation latent heat of vaporization. Chem. Eng. Commun. 29, 337–351 (1984)

    Article  CAS  Google Scholar 

  23. Torquato, S., Stell, G.: Latent heat of vaporization of a fluid. J. Phys. Chem. 85, 3029–3030 (1981)

    Article  CAS  Google Scholar 

  24. Torquato, S., Stell, G.R.: An equation for the latent heat of vaporization. Ind. Eng. Chem. Fundam. 21(3), 202–205 (1982)

    Article  CAS  Google Scholar 

  25. Zhong, X.U.: An improved generalized Watson equation for prediction of latent heat of vaporization. Chem. Eng. Commun. 29(1–6), 257–269 (1984)

    Article  CAS  Google Scholar 

  26. Lunnon, R.G.: The latent heat of evaporation of aqueous salt solutions. Proc. R. Soc. Lond. 25, 180–191 (1912)

    Google Scholar 

  27. Lide, D.R., Bruno, T.J.: CRC Handbook of Chemistry and Physics. CRC Press LLC, Boca Raton (2012)

    Google Scholar 

  28. Kestin, J.: Viscosity of liquid water in the range −8 °C to −150 °C. J. Phys. Chem. Ref. Data 7, 941–948 (1978)

    Article  CAS  Google Scholar 

  29. Kestin, J., Khalifa, H.E., Abe, Y., Grimes, C.E., Sookiazian, H., Wakeham, W.A.: Effect of pressure on the viscosity of aqueous sodium chloride solutions in the temperature range 20–150 °C. J. Chem. Eng. Data 23, 328–336 (1978)

    Article  CAS  Google Scholar 

  30. Craig, V.S., Ninham, B.W., Pashley, R.M.: The effect of electrolytes on bubble coalescence in water. J. Phys. Chem. 97, 10192–10197 (1993)

    Article  CAS  Google Scholar 

  31. Clift, R., Grace, J., Weber, M.: Bubbles, Drops and Particles, p. 346. Academic Press, New York (1978)

    Google Scholar 

  32. Hunter, J.B., Bliss, H.: Thermodynamic properties of aqueous salt solutions. Ind. Eng. Chem. 36, 945–953 (1944)

    Article  CAS  Google Scholar 

  33. Chou, J., Rowe, A.M.: Enthalpies of aqueous sodium chloride solutions from 32–350 F. Desalination 6, 105–115 (1969)

    Article  CAS  Google Scholar 

  34. Topor, N., Logasheva, A., Tsoy, G.: Determination of the heat of evaporation of pure substances and of aqueous solutions of inorganic salts with the derivatograph. J. Therm. Anal. 17, 427–433 (1979)

    Article  Google Scholar 

  35. Gurovich, B.M., Zyuzin, R.A., Mezheritskii, S.M.: Experimental determination of the heat of vaporization of aqueous salt solutions at atmospheric pressure. Chem. Pet. Eng 24, 599–600 (1988)

    Article  Google Scholar 

  36. Clarke, E.C.W., Glew, D.N.: Evaluation of the thermodynamic functions for aqueous sodium chloride from equilibrium and calorimetric measurements below 154 °C. J. Phys. Chem. Ref. Data 14, 489–610 (1985)

    Article  CAS  Google Scholar 

  37. Hubert, N., Gabes, Y., Bourdet, J.-B., Schuffenecker, L.: Vapor pressure measurements with a nonisothermal static method between 293.15 and 363.15 K for electrolyte solutions. Application to the H2O + NaCl System. J. Chem. Eng. Data 40, 891–894 (1995)

    Article  CAS  Google Scholar 

  38. Patil, K.R., Tripathi, A.D., Pathak, G., Katti, S.S.: Thermodynamic properties of aqueous electrolyte solutions. 2. Vapor pressure of aqueous solutions of sodium bromide, sodium iodide, potassium chloride, potassium bromide, potassium iodide, rubidium chloride, cesium chloride, cesium bromide, cesium iodide, magnesium chloride, calcium chloride, calcium bromide, calcium iodide, strontium chloride, strontium bromide, strontium iodide, barium chloride, and barium bromide. J. Chem. Eng. Data 36, 225–230 (1991)

    Article  CAS  Google Scholar 

  39. Sako, T., Hakuta, T., Yoshitome, H.: Vapor pressures of binary (water–hydrogen chloride,–magnesium chloride, and–calcium chloride) and ternary (water–magnesium chloride–calcium chloride) aqueous solutions. J. Chem. Eng. Data 30, 224–228 (1985)

    Article  CAS  Google Scholar 

  40. Frankel, S.P., Myseis, K.J.: On the “dimpling” during the approach of two interfaces. J. Phys. Chem. 66, 190–191 (1962)

    Article  CAS  Google Scholar 

  41. Shibue, Y.: Vapor pressures of aqueous NaCl and CaCl2 solutions at elevated temperatures. Fluid Phase Equilib. 213, 39–51 (2003)

    Article  CAS  Google Scholar 

  42. Sparrow, B.S.: Empirical equations for the thermodynamic properties of aqueous sodium chloride. Desalination 159(2), 161–170 (2003)

    Article  CAS  Google Scholar 

  43. Shahid, M., Pashley, R.M.: The use of air bubbles to desalinate seawater without boiling. In: Aqua Incognita: Why Ice Floats on Water and Galileo 400 Years On. Connorcourt Publishing, Melbourne (2014)

Download references

Acknowledgments

The authors would like to thank the Australian Research Council for funding this project and Mr. Mark Freeman of Blackwater Treatment Systems (BTS) for supplying the air pumping systems.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard M. Pashley.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, C., Shahid, M. & Pashley, R.M. Studies on Bubble Column Evaporation in Various Salt Solutions. J Solution Chem 43, 1297–1312 (2014). https://doi.org/10.1007/s10953-014-0206-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-014-0206-z

Keywords

Navigation