Skip to main content
Log in

Protonation Constants of Uridine 5′-Monophosphate in Different Aqueous Solutions of Methanol

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The protonation equilibria of uridine 5′-monophosphate disodium salt (UMP) was determined in binary solvent mixtures of water–methanol containing 0, 10, 15, 20, 25, 30, 35, 40, 45, and 50 % (v/v) methanol, using a combination of spectrophotometric and potentiometric methods at 25 °C and constant ionic strength (0.1 mol·dm−3 NaClO4). The protonation constants were analyzed using Kamlet, Abboud, and Taft parameters. A good linear correlation of the protonation constants (on the logarithmic scale) was obtained. Dual-parameter correlation of log10 K versus π* (dipolarity/polarizability) and α (hydrogen-bond donor acidity), as well as π* and β (hydrogen-bond acceptor basicity), gave good results in various aqueous solutions of methanol. Finally, the results are compared with CMP, a homolog of UMP, and are discussed in terms of the effect of the solvent on the protonation constants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Sigel, H.: Methods involving metal ions and complexes in clinical chemistry. In: Sigel, H. (ed.) Metal Ions in Biological Systems, vol. 16. Marcel Dekker, New York (1983)

    Google Scholar 

  2. Sigel, H.: Interactions of metal ions with nucleotides and nucleic acids and their constituents. Chem. Soc. Rev. 22, 255–267 (1993)

    Article  CAS  Google Scholar 

  3. Casassas, E., Tauler, R., Marques, I.: Interactions of H+ and Cu(II) ions with poly(adenylic acid): study by factor analysis. Macromolecules 27, 1729–1737 (1994)

    Article  CAS  Google Scholar 

  4. Casassas, E., Gargallo, R., Izquierdo-Ridorsa, A., Tauler, R.: Application of multivariate curve resolution to voltammetric data. Part 1. Study of Zn(II) complexation with some polyelectrolytes. React. Funct. Polym. 27, 1–14 (1995)

    Article  CAS  Google Scholar 

  5. Barron, D., Jimenez-Lozano, E., Irles, A., Barbosa, J.: Influence of pH and pK a values on electrophoretic behaviour of quinolones in aqueous and hydro-organic media. J. Chromatogr. A 871, 381–389 (2000)

    Article  CAS  Google Scholar 

  6. Helboe, T., Hansen, S.H.: Separation of nucleosides using capillary electrochromatography. J. Chromatogr. A 836, 315–324 (1999)

    Article  CAS  Google Scholar 

  7. Staszak, Z., Bartecki, A.: Influence of the bulk and donor-acceptor properties of solvent on ligand field spectra. Spectr. Lett. 22, 1193–1201 (1989)

    Article  CAS  Google Scholar 

  8. Reichardt, C.: Solvents and Solvent Effects in Organic Chemistry, 3rd edn. VCH, New York (2004)

    Google Scholar 

  9. Gharib, F., Feizabadi, M., Soltani, L.: Equilibrium studies of thallium(I) complexes with cytidine 5′-monophosphate in different aqueous solutions of methanol. J. Mol. Liq. 182, 64–69 (2013)

    Article  CAS  Google Scholar 

  10. Pehrsson, L., Ingman, F., Johansson, A.: Acid-base titrations by stepwise additions of equal volumes of titrant with special reference to automatic titrations. Theory, discussion of the Gran functions, the Hofstee method and equivalence volumes. Talanta 23, 769–780 (1976)

    Article  CAS  Google Scholar 

  11. Gameiro, P., Reis, S., Lima, J.L.F.C., de Castro, B.: Calibration of pH glass electrodes by direct strong acid/strong base titrations under dilute conditions. Anal. Chim. Acta 405, 167–172 (2000)

    Article  CAS  Google Scholar 

  12. Ferrer, J.S., Couallier, E., Rakib, M., Durand, G.: Electrochemical determination of acidity level and dissociation of formic acid/water mixtures as solvent. Electrochim. Acta 52, 5773–5780 (2007)

    Article  CAS  Google Scholar 

  13. Gharib, F., Farajtabar, F., Farahani, A.M., Bahmani, F.: Solvent effects on protonation constants of tryptophan in some aqueous aliphatic alcohol solutions. J. Chem. Eng. Data 55, 327–332 (2010)

    Article  CAS  Google Scholar 

  14. Beck, M.T., Nagypal, I.: Chemistry of Complex Equilibria. Ellis Harwood, New York (1990)

    Google Scholar 

  15. Leggett, D.J.: Computation Methods for the Determination of Formation Constants. Plenum Press, New York (1985)

    Book  Google Scholar 

  16. Meloun, M., Javurek, M., Havel, J.: Multiparametric curve fitting. A structural classification of programs for analyzing multicomponent spectra and their use in equilibrium-model determination. Talanta 33, 513–524 (1986)

    Article  CAS  Google Scholar 

  17. Massoud, S.S., Sigel, H.: Metal ion coordinating properties of pyrimidine-nucleoside 5′-monophosphates (CMP, UMP, TMP) and simple phosphate monoesters including d-ribose 5′-monophosphate. Establishment of relations between complex stability and phosphate basicity. Inorg. Chem. 27, 1447–1453 (1988)

    Article  CAS  Google Scholar 

  18. Izatt, R.M., Christensen, J.J., Rytting, J.H.: Sites and thermodynamic quantities associated with proton and metal ion interaction with ribonucleic acid, deoxyribonucleic acid, and their constituent bases, nucleosides and nucleotides. Chem. Rev. 71, 439–446 (1971)

    Article  CAS  Google Scholar 

  19. Saenger, W.: Principles of Nucleic Acid Structures. Springer, New York (1984)

    Book  Google Scholar 

  20. Barbosa, J., Barron, D., Beltran, J.L., Buti, S.: On the role of solvent in acid–base equilibria of diuretics in acetonitrile–water mixed solvents. Talanta 45, 817–827 (1998)

    Article  CAS  Google Scholar 

  21. Barbosa, J., Toro, I., Sanz-Nebot, V.: Acid-base behaviour of tripeptides in solvents used in liquid chromatography. Correlation between pK values and solvatochromic parameters of acetonitrile–water mixtures. Anal. Chim. Acta 347, 295–304 (1997)

    Article  CAS  Google Scholar 

  22. Demirelli, H., Koseoglu, F.: Solvent and substituent effects on the protonation of anilines in dioxane–water mixtures. J. Solution Chem. 33, 1501–1515 (2004)

    Article  CAS  Google Scholar 

  23. Buhvestov, U., Rived, F., Rafols, C., Bosch, E., Roses, M.: Solute–solvent and solvent–solvent interactions in binary solvent mixtures. Part 7. Comparison of the enhancement of the water structure in alcohol-water mixtures measured by solvatochromic indicators. J. Phys. Org. Chem. 11, 185–192 (1988)

    Article  Google Scholar 

  24. Shamel, A., Saghiri, A., Jaberi, F., Farajtabar, A., Mofidi, F., Khorrami, S.A., Gharib, F.: Solvent Effect on tautomeric and microscopic protonation constants of glycine in different aqueous solutions of methanol and ethanol. J. Solution Chem. 41, 1020–1032 (2012)

    Article  CAS  Google Scholar 

  25. Jabbari, M., Gharib, F.: Solvent dependence on antioxidant activity of some water-insoluble flavonoids and their cerium(IV) complexes. J. Mol. Liq. 168, 36–41 (2012)

    Article  CAS  Google Scholar 

  26. Jabbari, M., Gharib, F.: Solute-solvent effects on protonation equilibrium of some water-insoluble flavonoids. J. Solution Chem. 40, 561–574 (2011)

    Article  CAS  Google Scholar 

  27. Jabbari, M., Gharib, F.: Equilibrium studies of triphenyltin(IV) complexes with glycine, glycyl-glycine, and glycyl-glycyl-glycine in different aqueous solutions of ethanol. Can. J. Chem. 88, 877–885 (2010)

    Article  CAS  Google Scholar 

  28. Farajtabar, A., Jaberi, F., Gharib, F.: Preferential solvation and solvation shell composition of free base and protonated 5, 10, 15, 20-tetrakis(4-sulphonatophenyl)porphyrin in aqueous organic mixed solvents. Spectrochim. Acta A. 83, 213–220 (2011)

    Article  CAS  Google Scholar 

  29. Taft, R.W., Abboud, J.L.M., Kamlet, M.J.: Linear solvation energy relationships. 28. An analysis of Swain’s solvent “acidity” and “basicity” scales. J. Org. Chem. 49, 2001–2005 (1984)

    Article  CAS  Google Scholar 

  30. Kamlet, M.J., Abboud, J.L.M., Abraham, M.H., Taft, R.W.: Linear solvation energy relationships. 23 A comprehensive collection of the solvatochromic parameters, π*, α; and β; and some methods for simplifying the generalized solvatochromic equation. J. Org. Chem. 48, 2877–2887 (1983)

    Article  CAS  Google Scholar 

  31. Kamlet, M.J., Gal, J.F., Maria, P.C., Taft, R.W.: Linear solvation energy relationships. Part 32. A coordinate covalency parameter, ξ; which, in combination with the hydrogen bond acceptor basicity parameter, β; permits correlation of many properties of neutral oxygen and nitrogen bases (including aqueous pK a). J. Chem. Soc. Perkin Trans. 2, 1583–1589 (1985)

    Article  Google Scholar 

  32. Kamlet, M.J., Taft, R.W.: Linear solvation energy relationships. Local empirical rules—or fundamental laws of chemistry? A reply to the chemometricians. Acta Chem. Scand. Ser. B 39, 611–628 (1985)

    Article  Google Scholar 

  33. Maleki, N., Haghighi, B., Safavi, A.: Evaluation of formation constants, molar absorptivities of metal complexes, and protonation constants of acids by nonlinear curve fitting using Microsoft Excel Solver. Microchem. J. 62, 229–236 (1999)

    Article  CAS  Google Scholar 

  34. Puranik, S.M., Kumbharkhane, A.C., Mehrotra, S.C.: The static permittivity of binary mixtures using an improved Bruggeman model. J. Mol. Liq. 59, 173–177 (1994)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support by the Research Council of Islamic Azad University, Roudehen Branch is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farrokh Gharib.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soleimani, F., Gharib, F. Protonation Constants of Uridine 5′-Monophosphate in Different Aqueous Solutions of Methanol. J Solution Chem 43, 763–773 (2014). https://doi.org/10.1007/s10953-014-0161-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-014-0161-8

Keywords

Navigation