Skip to main content

Advertisement

Log in

Source study of three moderate size recent earthquakes in the Guerrero seismic gap

  • Original Article
  • Published:
Journal of Seismology Aims and scope Submit manuscript

Abstract

We study three recent earthquakes of different types in the Guerrero seismic gap zone with M ≥ 6.5: the 15 July 1996 Guerrero near-coast interplate earthquake (M w = 6.6), the 18 April 2002 Guerrero near-trench interplate earthquake (M w = 6.7), and the 11 December 2011 Guerrero normal-faulting inslab earthquake (M w = 6.5). We compute the slip distributions, estimate source parameters, and model strong ground motions with the finite-fault stochastic method. We use different methods to estimate source parameters in order to observe differences in stress drop and radiated seismic energy among these events. The similarity in seismic magnitude gives us the opportunity to compare our results for the three different types of earthquake and interpret them in terms of the tectonic environments and seismic hazard. We analyze the peak ground accelerations and their relation with the stress drop. We simulated ground motions with the stochastic method. The model parameters are validated against recordings and a stress drop of 3, 15, and 70 MPa is estimated for the near-trench interplate, near-coast interplate, and normal-faulting inslab events, respectively. The near-trench interplate event has the lowest radiated seismic energy and the lowest rupture velocity. This is reflected in the energy to moment ratio of 2.17 × 10−6, 4.52 × 10−6, and 3.96 × 10−6 for the near-trench interplate, near-coast interplate, and normal-faulting inslab events, respectively. We define asperities using two different criteria: (1) based on average displacement and (2) maximum displacement. The asperity area for the near-coast and near-trench interplate events represents about 23 and 24–25 % of the total rupture area, which in the case of the normal-faulting inslab event, it is only 19 and 23 % based on average and maximum displacement, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Aki K (1966) Generation and propagation of G waves from the Niigata earthquake of June 16. Part 2. Estimation of earthquake moment from G wave spectrum. Bull Earthquake Res Inst Tokyo Univ 44:73–88

    Google Scholar 

  • Aki K (1967) Scaling law of seismic spectrum. J Geophys Res 72:1217–1231

    Article  Google Scholar 

  • Anderson JG, Hough SE (1984) A model for the shape of the Fourier amplitude spectrum of acceleration at high frequencies. Bull Seism Soc Am 74:1969–1993

    Google Scholar 

  • Anderson JG, Bodin P, Brune J, Prince J, Singh SK, Quaas R, Onate M, Mena E (1986) Strong ground motion and source mechanism of the Mexico earthquake of Sept. 19, 1985. Science 233:1043–1049

    Article  Google Scholar 

  • Archuleta RJ, Cranswinck E, Mueller CH, Spudich P (1982) Source parameters of the 1980 Mammoth lakes, California, earthquakes sequence. J Geophys Res 87:4595–4607

    Article  Google Scholar 

  • Arroyo D, García D, Ordaz M, Mora MA, Singh SK (2010) Strong ground-motion relations for Mexican interplate earthquakes. J Seismol 14:769–785

    Article  Google Scholar 

  • Atkinson GM, Beresnev I (1997) Don’t call it stress drop. Seism Res Lett 68:3–4

    Article  Google Scholar 

  • Beresnev I, Atkinson GM (1997) Modeling finite-fault radiation from the ω n spectrum. Bull Seism Soc Am 67:67–84

    Google Scholar 

  • Beresnev I, Atkinson GM (1998) FINSIM—a FORTRAN program for simulating stochastic acceleration time histories from finite faults. Seism Res Lett 69:27–32

    Article  Google Scholar 

  • Bilek SL, Lay T (1999) Rigidity variations with depth along interplate megathrust faults in subduction zones. Nature 400:443–446

    Article  Google Scholar 

  • Boatwright J, Choy GL (1986) Teleseismic estimates of the energy radiated by shallow earthquakes. J Geophys Res 91:2095–2112

    Article  Google Scholar 

  • Boore DM (1983) Stochastic simulation of high-frequency ground motions based on seismological models of the radiated spectra. Bull Seism Soc Am 73:1865–1894

    Google Scholar 

  • Boore DM, Boatwright J (1984) Average body-wave radiation coefficient. Bull Seism Soc Am 74:1615–1621

    Google Scholar 

  • Boore DM, Joyner WB (1997) Site amplifications for generic rock sites. Bull Seism Soc Am 87:327–341

    Google Scholar 

  • Bracewell RN (1986) The Fourier transform and its applications. Mc Graw-Hill, New York

    Google Scholar 

  • Brune JN (1970) Tectonic stress and the spectra of seismic shear waves from earthquakes. J Geophys Res 75:4997–5009

    Article  Google Scholar 

  • Buforn E, Udías A, Dávila J M (2007) Source mechanism of the February 12, 2007, San Vicente Cape earthquake Mw = 5.9. Orfeus Newsletter 7: 3. available at http://www.orfeus-eu.org/organization/Organization/Newsletter/vol7no2/buforn/buforn.html

  • Castro RR, Pacor F, Franceschina G, Bindi D, Zonno G, Luzi L (2008) Stochastic strong-motion simulation of the M w 6 Umbria-Marche earthquake of September 1997: comparison of different approaches. Bull Seism Soc Am 98:662–670

    Article  Google Scholar 

  • Das S, Henry C (2003) Spatial relation between main earthquake slip and its aftershock distribution. Rev Geophys 41:3–16

    Article  Google Scholar 

  • DeMets C, Gordon R, Argus D, Stein S (1994) Effect of recent revisions to the geomagnetic time-scale on estimate of current plate motions. Geophys Res Lett 21:2191–2194

    Article  Google Scholar 

  • Domínguez J, Suárez G, Comte D, Quintanar L (2006) Seismic velocity structure of the Guerrero gap, Mexico. Geofis Int 45:129–139

    Google Scholar 

  • García D, Singh SK, Herráiz M, Pacheco JF, Ordaz M (2004) Inslab earthquakes of central Mexico: Q, source spectra, and stress drop. Bull Seism Soc Am 94:789–802

    Article  Google Scholar 

  • García D, Singh SK, Herráiz M, Ordaz M, Pacheco JF (2005) Inslab earthquakes of central Mexico: peak ground-motion parameters and response spectra. Bull Seism Soc Am 95:2272–2282

    Article  Google Scholar 

  • Hanks TC (1982) f max . Bull Seism Soc Am 72:1867–1879

    Google Scholar 

  • Hartzell S, Liu P, Mendoza C, Ji C, Larson KM (2007) Stability and uncertainty of finite-fault slip inversions: application to the 2004 Parkfield, California, earthquake. Bull Seism Soc Am 97:1911–1934

    Article  Google Scholar 

  • Hough SE, Seeber L, Lerner-Lam A, Armbruster JC, Guo H (1991) Empirical Green’s function analysis of Loma Prieta aftershocks. Bull Seism Soc Am 81:1737–1753

    Google Scholar 

  • Husseini MI (1977) Energy balance for formation along a fault. Geophys J R Astr Soc 49:699–714

    Article  Google Scholar 

  • Humphrey JR, Anderson JG (1994) Seismic source parameters from the Guerrero subduction zone. Bull Seism Soc Am 84:1754–1769

    Google Scholar 

  • Iglesias A, Singh SK, Pacheco JF, Alcántara L, Ortiz M, Ordaz M (2003) Near-trench Mexican earthquakes have anomalously low peak accelerations. Bull Seism Soc Am 93:953–959

    Article  Google Scholar 

  • Irikura K, Miyake H, Iwata T, Kamae K, Kawabe H, Dalguer D L (2004) Recipe for predicting strong ground motions from future large earthquakes. Proc. 13th World Conference of Earthquake Engineering. Vancouver, Canada. Paper no. 1371

  • Iwata T, Asano K (2011) Characterization of the heterogeneous source model of intraslab earthquakes toward strong ground prediction. Pure appl Geophy 168:117–124

    Article  Google Scholar 

  • Jeffreys H, Bullen KE (1940) Seismological tables, British Association for the Advancement of Science. Burlington House, London

    Google Scholar 

  • Kanamori H, Anderson DL (1975) Theoretical basis of some empirical relations in seismology. Bull Seism Soc Am 65:1073–1095

    Google Scholar 

  • Kanamori H, Kikuchi M (1993) The 1992 Nicaragua earthquake: a slow tsunami earthquake associated with subducted sediments. Nature 361:714–716

    Article  Google Scholar 

  • Kikuchi M, Kanamori H (1982) Inversion of complex body waves. Bull Seism Soc Am 72:491–506

    Google Scholar 

  • Kikuchi M, Kanamori H (1986) Inversion of complex body waves—II. Phys Earth Planetary Int 43:205–22

    Article  Google Scholar 

  • Kikuchi M, Kanamori H (1991) Inversion of complex body waves—III. Bull Seism Soc Am 81:2335–2350

    Google Scholar 

  • Kikuchi M, Kanamori H (2004) Teleseismic body-wave inversion program. http://www.eri.u-tokyo.ac.jp/ETAL/KIKUCHI/. Accessed 1 Oct 2014

  • Kostoglodov V, Singh S K, Santiago J A, Larson K M, Lowry A R, Bilham R (2003) A large silent earthquake in the Guerrero seismic gap, Mexico. Geophys Res Lett 15. doi:10.1029/2003GL017219

  • Larson KM, Kostoglodov V, Shin’ichi M, Santiago JA (2007) The 2006 aseismic slow slip event in Guerrero, Mexico: new results from GPS. Geophys Res Lett 34, L13309. doi:10.1029/2007GL029912

    Article  Google Scholar 

  • Lay T, Astiz L, Kanamori H, Christensen DH (1989) Temporal variation of large intraplate earthquakes in coupled subduction zones. Phys Earth Planet Int 54:258–312

    Article  Google Scholar 

  • Lay T, Ammon CJ, Hutko AR, Kanamori H (2009) Effects of kinematic constraints on teleseismic finite-source rupture inversions: great Peruvian earthquakes of 23 June 2001 and 15 August 2007. Bull Seism Soc Am 100:969–994

    Article  Google Scholar 

  • Lefevre LV, McNally KC (1985) Stress distribution and subduction of aseismic ridges in the Middle America subduction zone. J Geophys Res 90:4495–4510

    Article  Google Scholar 

  • Lermo J, Chavez-García FJ (1993) Site effects evaluation using spectral ratios with only one station. Bull Seism Soc Am 83:1574–1594

    Google Scholar 

  • Lowry A, Larson K, Kostoglodov V, Bilham R (2001) Transient slip on the subduction interface in Guerrero, southern Mexico. Geophys Res Lett 28:3753–3756

    Article  Google Scholar 

  • Mai PM, Beroza G (2000) Source scaling properties from finite-fault-rupture models. Bull Seism Soc Am 90:604–615

    Article  Google Scholar 

  • Mai PM, Spundich P, Boatwright J (2005) Hypocenters locations in finite-source rupture models. Bull Seism Soc Am 95:965–980

    Article  Google Scholar 

  • Motazedian D, Atkinson GM (2005) Stochastic finite fault modeling based on a dynamic corner frequency. Bull Seism Soc Am 95:995–1010

    Article  Google Scholar 

  • Murotani S, Miyaker H, Koketsu K (2008) Scaling of characterized slip models for plate-boundary earthquakes. Earth Planets Space 60:987–991

    Article  Google Scholar 

  • Ordaz M, Singh SK (1992) Source spectra and spectral attenuation of seismic waves from Mexican earthquakes, and evidence of amplification in the hill zone of Mexico City. Bull Seism Soc Am 82:24–43

    Google Scholar 

  • Pacheco JF, Iglesias A, Singh SK (2002) The October Coyuca, Guerrero, Mexico earthquake (M w 5.9): a normal fault in the expected compressional environment. Seism Res Lett 73(2):263

    Google Scholar 

  • Papageorgiou AS, Aki K (1983a) A specific barrier model for the quantitative description of inhomogeneous faulting and the prediction of strong around motion: I. Description of the model. Bull Seism Soc Am 73:693–722

    Google Scholar 

  • Papageorgiou AS, Aki K (1983b) A specific barrier model for the quantitative description of inhomogeneous faulting and the prediction of strong ground motion: II. Application of the model. Bull Seism Soc Am 73:953–978

    Google Scholar 

  • Parolai S, Bindi D, Baumbach M, Grosser H, Milkereit C, Karakisa S, Zünbül S (2004) Comparison of different site response estimation techniques using aftershocks of the 1999 Izmit earthquake. Bull Seism Soc Am 94:1096–1108

    Article  Google Scholar 

  • Pérez-Campos X, Singh SK, Beroza GC (2003) Reconciling teleseismic and regional estimates of seismic energy. Bull Seism Soc Am 93:2123–2130

    Article  Google Scholar 

  • Priestley KF, Masters TG (1986) Source mechanism of the September 19, 1985 Michoacan earthquake and its implications. Geophys Res Lett 36:601–604

    Article  Google Scholar 

  • Pro C, Buforn E, Bezzeghoud M, Udías A (2012) The earthquakes of 29 July 2003, 12 February 2007, and 17 December 2009 in the region of Cape Saint Vincent (SW Iberia) and their relation with the 1755 Lisbon earthquake. Tectonophysics 583:16–27

    Article  Google Scholar 

  • Ripperger J, Mai PM (2004) Fast computation of static stress changes on 2D faults from final slip distributions. Geophys Res Lett 31, L18610. doi:10.1029/2004GL020594

    Article  Google Scholar 

  • Rodríguez-Pérez Q (2014) Ground-motion prediction equations for near-trench interplate and normal-faulting inslab subduction zone earthquakes in Mexico. Bull Seism Soc Am 104:427–438

    Article  Google Scholar 

  • Shapiro NM, Singh SK, Pacheco JF (1998) A fast and simple diagnostic method for identifying tsunamigenic earthquakes. Geophys Res Lett 25:3911–3914

    Article  Google Scholar 

  • Shapiro NM, Olsen KB, Singh SK (2000) Wave-guide effects in subduction zones: evidence from three-dimensional modeling. Geophys Res Lett 27:433–436

    Article  Google Scholar 

  • Singh SK, Astiz L, Havskov J (1981) Seismic gaps and recurrence periods of large earthquakes along the Mexican subduction zone: a reexamination. Bull Seism Soc Am 71:827–843

    Google Scholar 

  • Singh SK, Suárez G, Domínguez T (1985) The great Oaxaca earthquake of 15 January 1931: lithosphere normal faulting in the subducted Cocos plate. Nature 317:56–58

    Article  Google Scholar 

  • Singh SK, Mena E, Anderson JG, Quaas R, Lermo J (1990) Source spectra and RMS acceleration of Mexican subduction zone earthquakes. Pure Appl Geophys 133:447–474

    Article  Google Scholar 

  • Singh SK, Mortera M (1991) Source time functions of the large Mexican subduction earthquakes, morphology of the Benioff zone, age of the plate, and their tectonic implications. J Geophys Res 96:21487–21502

    Article  Google Scholar 

  • Singh SK, Ordaz M (1994) Seismic energy release in Mexican subduction zone earthquakes. Bull Seism Soc Am 84:1533–1550

    Google Scholar 

  • Singh SK, Ordaz M, Alcántara L, Shapiro N, Kostoglodov V, Pacheco JF, Alcocer S, Gutiérrez C, Quaas R, Mikumo T, Ovando E (2000) The Oaxaca earthquake of 30 September 1999 (M w  = 7.5): a normal-faulting event in the subducted Cocos plate. Seism Res Lett 71:67–78

    Article  Google Scholar 

  • Somerville P, Irikura K, Graves R, Sawada S, Wald D, Abrahamson N, Iwasaki Y, Kagawa T, Smith N, Kowada A (1999) Characterizing crustal earthquake slip models for the prediction of strong ground motion. Seism Res Lett 70:59–80

    Article  Google Scholar 

  • Utkucu M, Alptekin Ö, Pinar A (2003) A detailed source study of the Orta (Çankiri) earthquake of June 6, 2000 (Ms = 6.1): an intraplate earthquake in Central Anatolia. J Seismolog 7:193–202

    Article  Google Scholar 

  • Venkataraman A, Kanamori H (2004) Observational constraints on the fracture energy of subduction zone earthquakes. J Geophys Res 109, B05302. doi:10.1029/2003JB002549

    Google Scholar 

  • Vergnolle M, Walpersdorf A, Kostoglodov V, Tregoning P, Santiago JA, Cotte N, Franco SI (2010) Slow slip events in Mexico revised from the processing of 11 year GPS observations. J Geophys Res 115, B08403. doi:10.1029/2009JB006852

    Google Scholar 

  • Yagi Y, Fukahata Y (2011) Introduction of uncertainty of Green’s function into waveform inversion for seismic source processes. Geophys J Int 191. doi:10.1111/j.1365-246X.2011.05043.x

  • Yokoi T, Irikura K (1991). Meaning of source controlled f in the empirical Green's function technique based on ω-2-scaling law. Annuals of Disaster Prevention Research Institute, Kyoto University 34 B-1: 177–189

Download references

Acknowledgments

This research was funded by the Mexican National Council for Science and Technology (CONACYT) (PhD scholarship QRP/195478/2010). We would like to thank the Mexican Seismological Service (SSN) at UNAM for providing the data of the broadband seismometer network. Strong ground motion records were obtained from the Mexican strong ground motion database from stations operated by CENAPRED; Instituto de Geofísica, UNAM; and Instituto de Ingeniería, UNAM, Mexico. Teleseismic data were obtained from the Global Seismic Network operated by Incorporated Research Institutions for Seismology (IRIS). The authors thank the comments of two anonymous reviewers, which have helped to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Q. Rodríguez-Pérez.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 8693 kb)

ESM 2

(DOC 7445 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodríguez-Pérez, Q., Ottemöller, L. & Raeesi, M. Source study of three moderate size recent earthquakes in the Guerrero seismic gap. J Seismol 19, 753–780 (2015). https://doi.org/10.1007/s10950-015-9493-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10950-015-9493-0

Keywords

Navigation