Skip to main content
Log in

Seismotectonic state of reservoirs inferred from magnitude distributions of fluid-induced seismicity

  • Original Article
  • Published:
Journal of Seismology Aims and scope Submit manuscript

Abstract

Fluid injections in geothermal reservoirs usually induce small magnitude earthquakes (M < 2). Sometimes, however, earthquakes with larger magnitudes (M ~4) occur. Recently, we have shown that under rather general conditions, the probability of an event having a magnitude larger than a given one increases proportionally to the injected fluid mass. The number of earthquakes larger than a given magnitude also depends on the tectonic conditions of an injection site. A convenient parameter for the characterisation of the seismotectonic state of a reservoir location is the seismogenic index Σ. It combines four, generally unknown, site-specific seismotectonic quantities. Using this index, we comparatively analyse the seismotectonic state of several geothermal as well as non-geothermal reservoir locations. The seismogenic indices of the considered locations are in the range of − 10 < Σ < 0.5. Although the number of reservoirs under examination is limited, we see a clear separation between hydrocarbon and geothermal reservoirs with respect to the seismotectonic state. In addition to a higher seismogenic index, geothermal reservoir locations are characterised by a lower b value. It means that fluid injections in geothermal reservoirs have a higher probability to induce an earthquake with a significant magnitude. Our formulation provides a basis for estimating expected magnitudes of induced earthquakes. This can potentially be used to avoid the occurrence of large magnitude earthquakes by correspondingly planning fluid injections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ake J, Mahrer K, O’Connell D, Block L (2005) Deep-injection and closely monitored induced seismicity at Paradox Valley, Colorado. B Seismol Soc Am 95:664–683

    Article  Google Scholar 

  • Baisch S, Harjes HP (2003) A model for fluid-injection-induced seismicity at the KTB, Germany. Geophys J Int 152:160–170

    Article  Google Scholar 

  • Baria R, Baumgartner J, Gerard A, Jung R, Garnish J (1999) European HDR research programme at Soultz-sous-Forets (France) 1987–1996. Geothermics 28:655–669. doi:10.1016/S0375-6505(99)00,036-X

    Article  Google Scholar 

  • Detournay E, Cheng AD (1993) Fundamentals of poroelasticity. In: Hudson J (ed) Comprehensive rock engineering: principles, practice and projects, chap 5. Pergamon Press, Oxford, pp 113–171

    Google Scholar 

  • Dinske C, Shapiro SA, Rutledge JT (2010) Interpretation of microseismicity resulting from gel and water fracturing of tight gas reservoirs. Pure Appl Geophys 167(1–2):169–182. doi:10.1007/s00,024-009-0003-6

    Article  Google Scholar 

  • Dyer BC (2001) Soultz GPK2 stimulation June/July 2000: seismic monitoring report. Tech. rep., Semore Seismic, Cornwall, UK

  • Giardini D, Grünthal G, Shedlock KM, Zhang P (2003) International handbook of earthquake & engineering seismology. In: International geophysics series. The GSHAP global seismic hazard map, vol 81. Academic Press, Amsterdam, pp 1233–1239

    Google Scholar 

  • Gräsle W, Kessels W, Kümpel HJ, Li X (2006) Hydraulic observations from a 1 year fluid production test in the 4000 m deep KTB pilot borehole. Geofluids 6:8–23. doi:10.1111/j.1468-8123.2006.00,124.x

    Article  Google Scholar 

  • Gutenberg B, Richter CF (1954) Seismicity of earth and associated phenomenon. Princeton University Press, Princeton

    Google Scholar 

  • Gutenberg B, Richter CF (1956) Earthquake magnitude, intensity, energy, and acceleration. B Seismol Soc Am 32:163–191

    Google Scholar 

  • Haney F, Kummerow J, Langenbruch C, Dinske C, Shapiro SA, Scherbaum F (2011) Magnitude estimation for microseismicity induced during the KTB 2004–2005 injection experiment. Geophysics 76(6). doi:10.1190/GEO2011-0020.1

  • Häring MO, Schanz U, Ladner F, Dyer BC (2008) Characterisation of the Basel 1 enhanced geothermal system. Geothermics 37:469–495. doi:10.1016/j.geothermics.2008.06.002

    Article  Google Scholar 

  • Hill DP (1977) A model for earthquake swarms. J Geophys Res 82:1347–1352

    Article  Google Scholar 

  • Ide S, Beroza GC (2001) Does apparent stress vary with earthquake size? Geophys Res Lett 28:3349–3352

    Article  Google Scholar 

  • Jost M, Büßelberg T, Jost Ö, Harjes HP (1998) Source parameters of injection-induced microearthquakes at 9 km depth at the KTB deep drilling site, Germany. B Seismol Soc Am 88(3):815–832

    Google Scholar 

  • Kaieda H, Kiho K, Motojima I (1993) Multiple fracture creation for hot dry rock development. Trends Geophys Res 2:127–139

    Google Scholar 

  • Langenbruch C, Shapiro SA (2010) Decay rate of fluid-induced seismicity after termination of reservoir stimulations. Geophysics 75(6):53–62. doi:10.1190/1.3506,005

    Article  Google Scholar 

  • Majer EL, Baria R, Stark M, Oates S, Bommer J, Smith B, Asanuma H (2007) Induced seismicity associated with enhanced geothermal systems. Geothermics 36(3):185–222. doi:10.1016/j.geothermics.2007.03.003

    Article  Google Scholar 

  • Maxwell S, Waltman C, Warpinski NR, Mayerhofer M, Boroumand N (2009) Imaging seismic deformation induced by hydraulic fracture complexity. SPE Reserv Evalu Eng 12(1):48–52. doi:10.2118/102,801–PA

    Google Scholar 

  • Nur A, Booker J (1972) Aftershocks caused by pore fluid flow? Science 175:885–887

    Article  Google Scholar 

  • Pearson C (1981) The relationship between microseismicity and high pore pressures during hydraulic stimulation experiments in low permeability granitic rocks. J Geophys Res 86:7855–7864

    Article  Google Scholar 

  • Rothert E, Shapiro SA (2007) Statistics of fracture strength and fluid-induced microseismicity. J Geophys Res 112:B04,309. doi:10.1029/2005JB003,959

    Article  Google Scholar 

  • Rutledge JT, Phillips WS, Mayerhofer MJ (2004) Faulting induced by forced fluid injection and fluid flow forced by faulting: an interpretation of hydraulic-fracture microseismicity, Carthage Cotton Valley gas field, Texas. B Seismol Soc Am 94:1817–1830

    Article  Google Scholar 

  • Scholz CH (2002) Mechanics of earthquake and faulting. Cambridge University Press, New York

    Book  Google Scholar 

  • Shapiro SA, Dinske C (2009) Scaling of seismicity induced by nonlinear fluid-rock interaction. J Geophys Res 114:1–14. doi:10.1029/2008JB006,145

    Article  Google Scholar 

  • Shapiro SA, Huenges E, Borm G (1997) Estimating the permeability from fluid-injection-induced seismic emisssions at the KTB site. Geophys J Int 131:F15–F18

    Article  Google Scholar 

  • Shapiro SA, Kummerow J, Dinske C, Asch G, Rothert E, Erzinger J, Kümpel HJ, Kind R (2006) Fluid induced seismicity guided by a continental fault: injection experiment of 2004/2005 at the German deep drilling site (KTB). Geophys Res Lett 33:1051–1066. doi:10.1029/2005GL024,659

    Google Scholar 

  • Shapiro SA, Dinske C, Kummerow J (2007) Probability of a given-magnitude earthquake induced by a fluid injection. Geophys Res Lett 34:1–5. doi:10.1029/2007GL031,615

    Article  Google Scholar 

  • Shapiro SA, Dinske C, Langenbruch C, Wenzel F (2010) Seismogenic index and magnitude probability of earthquakes induced during reservoir fluid stimulations. TLE 29(3):304–309. doi:10.1190/1.3353,727

    Google Scholar 

  • Shearer PM (2009) Introduction to seismology. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Soma N, Asanuma H, Kaieda H, Tezuka K, Wyborn D, Niitsuma H (2004) On site mapping of microseismicity at Cooper Basin, Australia HDR project by the Japanese team. In: Proceedings, twenty-ninth workshop on geothermal reservoir engineering, Stanford University, Stanford

  • Turcotte DL, Holliday JR, Rundle JB (2007) BASS, an alternative to ETAS. Geophys Res Lett 34(12):1–5. doi:10.1029/2007GL029,696

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU) as sponsor of the MAGS project and the sponsors of the PHASE consortium project for supporting the research presented in this paper. Microseismic data from Cooper Basin and Ogachi are courtesy of Dr. H. Kaieda (CRIEPI, Japan); from Basel, of Dr. M. O. Häring (Geothermal Explorers LTD); from Paradox Valley, of Dr. K. Mahrer (formerly, Bureau of Reclamation, now at Weatherford); from Cotton Valley, of Dr. J. Rutledge (LANL); from Barnett Shale, of Dr. S. Maxwell (formerly, Pinnacle, now at Schlumberger); and microseismic data from Soultz experiments were kindly provided by Dr. A. Jupe and by the GEIE Exploration Minire de la Chaleur. We thank the two anonymous reviewers for their comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carsten Dinske.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dinske, C., Shapiro, S.A. Seismotectonic state of reservoirs inferred from magnitude distributions of fluid-induced seismicity. J Seismol 17, 13–25 (2013). https://doi.org/10.1007/s10950-012-9292-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10950-012-9292-9

Keywords

Navigation