Skip to main content
Log in

Broadband frequency-dependent amplification of seismic waves across Bucharest, Romania

  • Original article
  • Published:
Journal of Seismology Aims and scope Submit manuscript

Abstract

The determination of seismic amplitude amplification is a fundamental contribution to seismic hazard assessment. While often only high-frequency amplitude variations (>1 Hz) are taken into account, we analyse broadband waveforms from 0.14 to 8.6 Hz using a temporary network of 32 stations in and around the earthquake-prone city of Bucharest. Spectral amplitudes are calculated with an adaptive multiple-taper approach. Across our network (aperture 25 km × 25 km), we find a systematic northwest/southeast-oriented structural influence on teleseismic P-wave amplitudes from 0.14 to 0.86 Hz that can be explained by constructive interference in the dipping Cenozoic sedimentary layers. For higher frequencies (1.4–8.75 Hz), more local site effects prevail and can be correlated partly among neighbouring stations. The transition between systematic and localised amplitude variations occurs at about 1 Hz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aldea A, Lungu D, Arion C (2004) GIS mapping of seismic microzonation and site effects in Bucharest based on existing seismic and geophysical evidence. In: Lungu D, Wenzel F, Mouroux P, Tojo I (eds) Earthquake loss estimation and risk reduction 1, vol 1. Independent Film, Bucharest, pp 237–249

    Google Scholar 

  • Atanasiu I (1959) Cutremurele de Pamint din Romania. Editura Academiei Republicii Populare Romine, Bucuresti, 195 pp

  • Bala A, Raileanu V, Mandrescu N, Zihan I, Dananau E (2005) Physical properties of the Quaternary sedimentary rocks in the eastern Bucharest area. Rom Rep Phys 57:151–163

    Google Scholar 

  • Bartlakowski J, Wenzel F, Radulian M, Ritter JRR, Wirth W (2006) Urban shakemap methodology for Bucharest. Geophys Res Lett 33:L14310. doi:10.1029/2006GL026283

    Article  Google Scholar 

  • Cioflan CO, Apostol BF, Moldoveanu CL, Panza GF, Marmureanu Gh (2004) Deterministic approach for the seismic microzonation of Bucharest. Pure Appl Geophys 161:1149–1164. doi:10.1007/s00024-2496-8

    Article  Google Scholar 

  • Flatté SM, Wu RS (1988) Small-scale structure in the lithosphere and asthenosphere deduced from arrival time and amplitude fluctuations at NORSAR. J Geophys Res 93:6601–6614. doi:10.1029/JB093iB06p06601

    Article  Google Scholar 

  • Georgescu ES (2004) The partial collapse of Coltzea tower during the Vrancea earthquake of 14/26 October 1802: the historic warning of long-period ground motions site effect in Bucharest. In: Lungu D, Wenzel F, Mouroux P, Tojo I (eds) Earthquake loss estimation and risk reduction 2, vol 2. Independent Film, Bucharest, pp 331–340

    Google Scholar 

  • Hauser F, Raileanu V, Fielitz W, Bala A, Prodehl C, Polonic G et al (2001) VRANCEA99—the crustal structure beneath the southeastern Carpathians and the Moesian platform from a refraction seismic profile in Romania. Tectonophysics 340:233–256. doi:10.1016/S0040-1951(01)00195-0

    Article  Google Scholar 

  • Hauser F, Prodehl C, Landes M, VRANCEA working group (2002) Seismic experiments target earthquake-prone region in Romania. Eos Trans AGU 83:457–463. doi:10.1029/2002EO000323

    Article  Google Scholar 

  • Hock S, Korn M, Ritter JRR, Rothert E (2004) Mapping random lithospheric heterogeneities from the Baltic Shield to the Massif Central, France. Geophys J Int 157:251–264. doi:10.1111/j.1365-246X.2004.02191.x

    Article  Google Scholar 

  • Lungu D, Scherer R, Zohar M, Coman O (1994) On the phenomenon of long predominant periods of ground vibration during the 1990, 1986, and 1977 earthquake records from Vrancea source. In: Savidis SA (ed) Earthquake resistant construction and design. AA Balkema, Rotterdam, pp 51–59

    Google Scholar 

  • Lungu D, Aldea A, Cornea T (1999a) Dynamic characteristics of the existing building stock of Romania. In: Fryba L, Naprstek J (eds) Structural dynamics. AA Balkema, Rotterdam, pp 897–902

    Google Scholar 

  • Lungu D, Cornea T, Nedelcu C (1999b) Hazard assessment and site-dependent response for Vrancea earthquakes. In: Wenzel F, Lungu D, Novak O (eds) Vrancea earthquakes: tectonics, hazard and risk mitigation. Kluwer, Dordrecht, pp 251–267

    Google Scholar 

  • Lungu D, Demetriu S, Arion C (1999c) Seismic vulnerability of buildings exposed to Vrancea earthquakes in Romania. In: Wenzel F, Lungu D, Novak O (eds) Vrancea earthquakes: tectonics, hazard and risk mitigation. Kluwer, Dordrecht, pp 215–224

    Google Scholar 

  • Mândrescu N, Radulian M (1999) Macroseismic field of the Romanian intermediate-depth earthquakes. In: Wenzel F, Lungu D, Novak O (eds) Vrancea earthquakes: tectonics, hazard and risk mitigation. Kluwer, Dordrecht, pp 163–174

    Google Scholar 

  • Mândrescu N, Radulian M, Marmureanu Gh (2004) Site conditions and predominant period on seismic motion in the Bucharest urban area. Rev Roum Geophys 48:37–48

    Google Scholar 

  • Mândrescu N, Radulian M, Marmureanu Gh (2007) Geological, geophysical and seismological criteria for local response evaluation in Bucharest urban area. Soil Dyn Earthqu Eng 27:367–393. doi:10.1016/j.soildyn.2006.06.010

    Article  Google Scholar 

  • Moldoveanu CL, Radulian M, Marmureanu Gh, Panza GF (2004) Microzonation of Bucharest: state-of-the-art. Pure Appl Geophys 161:1125–1147. doi:10.1007/s00024-003-2499-5

    Article  Google Scholar 

  • Musson RMW (1999) Probabilistic seismic hazard maps for the North Balkan region. Ann Geofis 42:1109–1124

    Google Scholar 

  • Oncescu MC, Marza VI, Rizescu M, Popa M (1999) The Romanian earthquake catalogue between 984–1997. In: Wenzel F, Lungu D, Novak O (eds) Vrancea earthquakes: tectonics, hazard and risk mitigation. Kluwer, Dordrecht, pp 43–47

    Google Scholar 

  • Park J, Lindberg CR, Vernon FL III (1987) Multitaper spectral analysis of high-frequency seismograms. J Geophys Res 92:12675–12684. doi:10.1029/JB092iB12p12675

    Article  Google Scholar 

  • Percival DB, Walden AT (1993) Spectral analysis for physical applications: multitaper and conventional univariate techniques. Cambridge University Press, New York

    Google Scholar 

  • Radu C (1974) Contribution a l’etude de la seismicite de la Roumanie et comparaison avec la seismicite de sud-est de la France. PhD thesis, Universite de Strasbourg, 404 pp

  • Raileanu V, Bala A, Hauser F, Prodehl C, Fielitz W (2005) Crustal properties from S-wave and gravity data along a seismic refraction profile in Romania. Tectonophysics 410:251–272. doi:10.1016/j.tecto.2004.09.014

    Article  Google Scholar 

  • Ritter JRR, Balan SF, Bonjer K-P, Diehl T, Forbriger T, Marmureanu G et al (2005) Broadband urban seismology in the Bucharest metropolitan area. Seismol Res Lett 76:574–580

    Article  Google Scholar 

  • Sheriff RR, Geldart LP (1982) Exploration seismology 1—history, theory & data acquisition. Cambridge University Press, Cambridge

    Google Scholar 

  • Slepian D (1978) Prolate spheriodal wave functions, Fourier analysis, and uncertainty—V: the discrete case. Bell Syst Tech J 57:1371–1429

    Google Scholar 

  • Sokolov V, Bonjer K-P, Wenzel F (2004) Accounting for site effect in probabilistic assessment of seismic hazard for Romania and Bucharest: a case of deep seismicity in Vrancea zone. Soil Dyn Earthqu Eng 24:929–947. doi:10.1016/j.soildyn.2004.06.021

    Article  Google Scholar 

  • Stammler K (1993) SeismicHandler—programmable multichannel data handler for interactive and automatic processing of seismological analyses. Comput Geosci 19:135–140. doi:10.1016/0098-3004(93)90110-Q

    Article  Google Scholar 

  • Weber M (1994) Traveltime and amplitude anomalies at the seismic broadband array GRF. Geophys J Int 118:57–74. doi:10.1111/j.1365-246X.1994.tb04675.x

    Article  Google Scholar 

  • Wenzel F, Lungu D, Novak O (1999a) Vrancea earthquakes: tectonics, hazard and risk mitigation. Kluwer, Dordrecht

    Google Scholar 

  • Wenzel F, Lorenz FP, Sperner B, Oncescu MC (1999b) Seismotectonics of the Romanian Vrancea area. In: Wenzel F, Lungu D, Novak O (eds) Vrancea earthquakes: tectonics, hazard and risk mitigation. Kluwer, Dordrecht, pp 15–25

    Google Scholar 

  • Wessel P, Smith WHF (1998) New, improved version of generic mapping tools released. Eos Trans AGU 79:579. doi:10.1029/98EO00426

    Article  Google Scholar 

  • Wirth W, Wenzel F, Sokolov VY, Bonjer K-P (2003) A uniform approach to seismic site effect analysis in Bucharest, Romania. Soil Dyn Earthqu Eng 23:737–758. doi:10.1016/S0267-7261(03)00073-3

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henriette Sudhaus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sudhaus, H., Ritter, J. Broadband frequency-dependent amplification of seismic waves across Bucharest, Romania. J Seismol 13, 479–497 (2009). https://doi.org/10.1007/s10950-008-9140-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10950-008-9140-0

Keywords

Navigation