Skip to main content

Advertisement

Log in

Nanostructural Characterization of the Fe3O4/ZnO Magnetic Nanocomposite as an Application in Medicine

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

In the present work, we synthesize Fe3O4/ZnO nanocomposite by sol-gel method using iron nitrate, ethylene glycol, zinc acetate dehydrate, and ammonium carbonate as precursors. Amorphous matrix and crystalline grains were formed in composite as well. The nanostructural properties of the nanocomposite were characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), transmission electron microscopy (TEM), vibrating sample magnetometer (VSM), and colloidal stability was checked out by Zeta potential. The biological effects of Fe3O4/ZnO nanocomposite were investigated by microculture tetrazolium test (MTT) against MCF-7 breast cancer cells as usage in medicine. Crystallite size, lattice strain, and dislocation density of the nanoparticles were estimated with Williamson-Hall method. The obtained results show that the highest death rate of Michigan Cancer Foundation-7 (MCF-7) cancer cells was for Fe3O4/ZnO nanocomposite with the molar ratio is 1:10 in the lower concentration (49 μ g/ml). Therefore, these nanocomposites due to their small size, colloidal stability, magnetic properties, and nontoxicity can be a good candidate as option in medicine application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Shahmiri, M.R., Bahari, A., Karimi-Maleh, H., Hosseinzadeh, R., Mirnia, N.: Ethynylferrocene–NiO/MWCNT nanocomposite modified carbon paste electrode as a novel voltammetric sensor for simultaneous determination of glutathione and acetaminophen. Sens. Actuators B: Chem. 177, 70–77 (2013)

    Article  Google Scholar 

  2. Kong, W., Abd-Shukor, R.: Enhanced electrical transport properties of nano NiFe2O4-added (Bi1.6Pb0.4) Sr2Ca2Cu3O10 superconductor. J. Supercond. Novel Magn. 23(2), 257–263 (2010)

    Article  Google Scholar 

  3. Chinnaraj, K., Manikandan, A., Ramu, P., Antony, S.A., Neeraja, P.: Comparative studies of microwave-and sol-gel-assisted combustion methods of Fe3O4 nanostructures: structural, morphological, optical, magnetic, and catalytic properties. J. Supercond. Novel Magn. 28(1), 179–190 (2015)

    Article  Google Scholar 

  4. Bahari, A., Roeinfard, M., Ramzannezhad, A.: Characteristics of Fe3O4/ZnO nanocomposite as a possible gate dielectric of nanoscale transistors in the field of cyborg. J. Mater. Sci. Mater. Electron. 27(9), 9363–9369 (2016)

    Article  Google Scholar 

  5. Singh, M., Sviridenkova, N., Timur, N., Savchenko, A., Shetinin, I., Majouga, A.: Synthesis and characterization of stable iron oxide nanoparticle with amino covalent binding on the surface for biomedical application. J. Clust. Sci. 27(4), 1383–1393 (2016)

    Article  Google Scholar 

  6. Liu, A.P., Li, X., Duan, L.H., Qin, G.P., Guo, H.H.: Study of Fe3O4 nano-magnetic ferrofluid by atomic force microscope. J. Supercond. Novel Magn. 23(6), 967–970 (2010)

    Article  Google Scholar 

  7. Tse, B.W.C., Cowin, G.J., Soekmadji, C., Jovanovic, L., Vasireddy, R.S., Ling, M.T., Russell, P.J.: PSMA-targeting iron oxide magnetic nanoparticles enhance MRI of preclinical prostate cancer. Nanomedicine 10(3), 375–386 (2015)

    Article  Google Scholar 

  8. Wolf, S.A., Awschalom, D.D., Buhrman, R.A., Daughton, J.M., Von Molnar, S., Roukes, M.L., Treger, D.M.: Spintronics: a spin-based electronics vision for the future. Science 294(5546), 1488–1495 (2001)

    Article  ADS  Google Scholar 

  9. Hornyak, G.L., Moore, J.J., Tibbals, H.F., Dutta, J.: Fundamentals of nanotechnology. CRC 5, 204–233 (2008)

    Google Scholar 

  10. Vinogradov, S., Wei, X.: Cancer stem cells and drug resistance: the potential of nanomedicine. Nanomedicine 7(4), 597–615 (2012)

    Article  Google Scholar 

  11. Zhou, J., Xu, N.S., Wang, Z.L.: Dissolving behavior and stability of ZnO wires in biofluids: a study on biodegradability and biocompatibility of ZnO nanostructures. Adv. Mater. 18(18), 2432–2435 (2006)

    Article  Google Scholar 

  12. Wahab, R., Siddiqui, M.A., Saquib, Q., Dwivedi, S., Ahmad, J., Musarrat, J., Shin, H.S.: ZnO nanoparticles induced oxidative stress and apoptosis in HepG2 and MCF-7 cancer cells and their antibacterial activity. Colloids Surf. B: Biointerfaces 117, 267–276 (2014)

    Article  Google Scholar 

  13. Ostrovsky, S., Kazimirsky, G., Gedanken, A., Brodie, C.: Selective cytotoxic effect of ZnO nanoparticles on glioma cells. Nano Res. 2(11), 882–890 (2009)

    Article  Google Scholar 

  14. Wan, J., Li, H., Chen, K.: Synthesis and characterization of Fe3O4@ZnO core-shell structured nanoparticles. Mater. Chem. Phys. 114(1), 30–32 (2009)

    Article  ADS  Google Scholar 

  15. Shal, A.A., Jafari, A.: Study of structural and magnetic properties of superparamagnetic Fe3O4–ZnO core–shell nanoparticles. J. Supercond. Novel Magn. 27(6), 1531–1538 (2014)

    Article  Google Scholar 

  16. Choi, K., Chae, W., Kim, E., Jun, J., Jung, J., Kim, Y.: A facile fabrication of Fe3O4/ZnO core-shell submicron particles with controlled size. October 47(10), 3369–3372 (2011)

    Google Scholar 

  17. Beltran Huarac, J.C., Singh, S.P., Tomar, M.S., Pena, S., Rivera, L., Perales-Perez, O.: Synthesis of Fe3O4/ZnO core-shell nanoparticles for photodynamic therapy applications. MRS Online Proc. Libr. Arch. 1257, O06–04 (2010)

    Google Scholar 

  18. Gordon, T., Perlstein, B., Houbara, O., Felner, I., Banin, E., Margel, S.: Synthesis and characterization of zinc/iron oxide composite nanoparticles and their antibacterial properties. Colloids Surf. A Physicochem. Eng. Asp. 374(1–3), 1–8 (2011)

    Article  Google Scholar 

  19. Singh, S.P.: Multifunctional magnetic quantum dots for cancer theranostics. J. Biomed. Nanotechnol. 7(1), 95–97 (2011)

    Article  Google Scholar 

  20. Rahman, M.F., Wang, J., Patterson, T.A., Saini, U.T., Robinson, B.L., Newport, G.D., Ali, S.F.: Expression of genes related to oxidative stress in the mouse brain after exposure to silver-25 nanoparticles. Toxicol. Lett. 187(1), 15–21 (2009)

    Article  Google Scholar 

  21. Prabhu, Y.T., Rao, K.V., Kumar, V.S.S., Kumari, B.S.: X-ray analysis by Williamson-Hall and size-strain plot methods of ZnO nanoparticles with fuel variation. World J. Nano Sci. Eng. 4(01), 21 (2014)

    Article  ADS  Google Scholar 

  22. Shintani, T., Murata, Y.: Evaluation of the dislocation density and dislocation character in cold rolled Type 304 steel determined by profile analysis of X-ray diffraction. Acta Mater. 59(11), 4314–4322 (2011)

    Article  Google Scholar 

  23. Uvarov, V., Popov, I.: Metrological characterization of X-ray diffraction methods for determination of crystallite size in nano-scale materials. Mater. Charact. 58(10), 883–891 (2007)

    Article  Google Scholar 

  24. Franklin, N.M., Rogers, N.J., Apte, S.C., Batley, G.E., Gadd, G.E., Casey, P.S.: Comparative toxicity of nanoparticulate ZnO, bulk ZnO, and ZnCl2 to a freshwater microalga (Pseudokirchneriella subcapitata): the importance of particle solubility. Environ. Sci. Technol. 41(24), 8484–8490 (2007)

    Article  ADS  Google Scholar 

  25. Huarac, J.C.B., Singh, S.P., Tomar, M.S., Pena, S., Rivera, L., Perales-Perez, O.: Synthesis of Fe3O4/ZnO core-shell nanoparticles for photodynamic therapy applications. MRS Proc. 1257, 1257–O06 (2010)

    Google Scholar 

  26. Nanse, G., Papirer, E., Fioux, P., Moguet, F., Tressaud, A.: Fluorination of carbon blacks: an X-ray photoelectron spectroscopy study: I. A literature review of XPS studies of fluorinated carbons. XPS investigation of some reference compounds. Carbon 35(2), 175–194 (1997)

    Article  Google Scholar 

  27. Biesinger, M.C., Payne, B.P., Grosvenor, A.P., Lau, L.W., Gerson, A.R., Smart, R.S.C.: Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Appl. Surf. Sci. 257(7), 2717–2730 (2011)

    Article  ADS  Google Scholar 

  28. Gammon, W.J., Kraft, O., Reilly, A.C., Holloway, B.C.: Experimental comparison of N (1s) X-ray photoelectron spectroscopy binding energies of hard and elastic amorphous carbon nitride films with reference organic compounds. Carbon 41(10), 1917–1923 (2003)

    Article  Google Scholar 

  29. Bahari, A., Nik, A.S., Roodbari, M., Mirnia, N.: Investigation the Al–Fe–Cr–Ti nano composites structures with using XRD and AFM techniques. Sadhana 37(6), 657–664 (2012)

    Article  Google Scholar 

  30. Win, K.Y., Feng, S.S.: Effects of particle size and surface coating on cellular uptake of polymeric nanoparticles for oral delivery of anticancer drugs. Biomaterials 26(15), 2713–2722 (2005)

    Article  Google Scholar 

  31. Premanathan, M., Karthikeyan, K., Jeyasubramanian, K., Manivannan, G.: Selective toxicity of ZnO nanoparticles toward Gram-positive bacteria and cancer cells by apoptosis through lipid peroxidation. Nanomedicine: Nanotechnol. Biol. Med. 7(2), 184–192 (2011)

    Article  Google Scholar 

  32. Hanley, C., Layne, J., Punnoose, A., Reddy, K.M., Coombs, I., Coombs, A., Wingett, D.: Preferential killing of cancer cells and activated human T cells using ZnO nanoparticles. Nanotechnology 19(29), 295103 (2008)

    Article  Google Scholar 

  33. Wahab, R., Siddiqui, M.A., Saquib, Q., Dwivedi, S., Ahmad, J., Musarrat, J., Shin, H.S.: ZnO nanoparticles induced oxidative stress and apoptosis in HepG2 and MCF-7 cancer cells and their antibacterial activity. Colloids Surf. B Biointerfaces 117, 267–276 (2014)

    Article  Google Scholar 

  34. Hanaor, D., Michelazzi, M., Leonelli, C., Sorrell, C.C.: The effects of carboxylic acids on the aqueous dispersion and electrophoretic deposition of ZrO2. J. Eur. Ceram. Soc. 32(1), 235–244 (2012)

    Article  Google Scholar 

  35. Greenwood, R., Kendall, K.: Selection of suitable dispersants for aqueous suspensions of zirconia and titania powders using acoustophoresis. J. Eur. Ceram. Soc. 19(4), 479–488 (1999)

    Article  Google Scholar 

  36. Bahari, A.: Characteristics of Fe3O4, α-Fe2O3, and γ-Fe2O3 nanoparticles as suitable candidates in the field of nanomedicine. J Supercond Nov Magn, 1–10 (2017)

  37. Kievit, F.M., Zhang, M.: Surface engineering of iron oxide nanoparticles for targeted cancer therapy. Accounts Chem. Res. 44(10), 853–862 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Bahari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roeinfard, M., Bahari, A. Nanostructural Characterization of the Fe3O4/ZnO Magnetic Nanocomposite as an Application in Medicine. J Supercond Nov Magn 30, 3541–3548 (2017). https://doi.org/10.1007/s10948-017-4154-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-017-4154-x

Keywords

Navigation