Skip to main content
Log in

Hysteretic Critical State in Coplanar Josephson Junction with Monolayer Graphene Barrier

  • Letter
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Coplanar Al/graphene/Al junctions fabricated on the same graphene sheet deposited on silicon carbide (SiC), show robust Josephson coupling at subKelvin temperature, when the separations between the electrodes is below 400 nm. Remarkably, a hysteretic Critical State sets in when ramping an orthogonal magnetic field, with a sudden collapse of the Josephson critical current I c when turning the field on, and a revival of I c when inverting the sweep. Similar hysteresis can be found in granular superconducting films which may undergo the Berezinskii-Kosterlitz-Thouless transition. Here, we give quantitative arguments to prove that this odd behavior of the magnetoconductance gives evidence for an incipient Berezinskii-Kosterlitz-Thouless transition with drift and pinning of fluctuating free vortices induced by the current bias.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ojeda-Aristizabal, C., Ferrier, M., Guéron, S., Bouchiat, H.: Tuning the proximity effect in a superconductorgraphene- superconductor junction. Phys. Rev. B 79, 165436 (2009)

    Article  ADS  Google Scholar 

  2. Mizuno, N., Nielsen, B., Du, X.: Ballistic-like supercurrent in suspended graphene Josephson weak links. Nat. Commun. 4, 2716 (2013)

    Article  ADS  Google Scholar 

  3. Baringhaus, J., Ruan, M., Edler, F., Tejeda, A., Sicot, M., Taleb-Ibrahimi, A., Li, A. P., Jiang, Z. G., Conrad, E. H., Berger, C., Tegenkamp, C., de Heer, W. A.: Exceptional ballistic transport in epitaxial graphene nanoribbons. Nature 506(7488), 349 (2014)

    Article  ADS  Google Scholar 

  4. Calado, V. E., Goswami, S., Nanda, G., Diez, M., Akhmerov, A. R., Watanabe, K., Taniguchi, T., Klapwijk, T. M., Vandersypen, L. M. K.: Ballistic Josephson junctions in edge-contacted graphene. Nat. Nanotechnol. 10(9), 761 (2015)

    Article  ADS  Google Scholar 

  5. Ben Shalom, M., Zhu, M. J., Fal’ko, V. I., Mishchenko, A., Kretinin, A. V., Novoselov, K. S., Woods, C. R., Watanabe, K., Taniguchi, T., Geim, A. K., Prance, J.R.: Quantum oscillations of the critical current and high-field superconducting proximity in ballistic graphene. Nat. Phys. 12(4), 318 (2016)

    Article  Google Scholar 

  6. Beenakker, C. W. J.: Specular Andreev Reflection in Graphene. Phys. Rev. Lett. 97, 067007 (2006)

    Article  ADS  Google Scholar 

  7. Titov, M., Ossipov, A., Beenakker, C. W. J.: Excitation gap of a graphene channel with superconducting boundaries. Phys. Rev. B 75, 045417 (2007)

    Article  ADS  Google Scholar 

  8. Heersche, H. B., Jarillo-Herrero, P., Oostinga, J. B., Vandersypen, L. M. K., Morpurgo, A. F.: Bipolar supercurrent in graphene. Nature 446(7131), 56 (2007)

    Article  ADS  Google Scholar 

  9. Deon, F., Šopić, S., Morpurgo, A.F.: Tuning the Influence of Microscopic Decoherence on the Superconducting Proximity Effect in a Graphene Andreev Interferometer. Phys. Rev. Lett. 112, 126803 (2014)

    Article  ADS  Google Scholar 

  10. Choi, J. -H., Lee, G. -H., Park, S., Jeong, D., Lee, J. -O., Sim, H. S., Doh, Y. -J., Lee, H. -J.: Complete gate control of supercurrent in graphene p-n junctions. Nat. Commun. 4, 2525 (2013)

    ADS  Google Scholar 

  11. Dirks, T., Hughes, T. L., Lal, S., Uchoa, B., Chen, Y. F., Chialvo, C., Goldbart, P. M., Mason, N.: Transport through Andreev bound states in a graphene quantum dot. Nat. Phys. 7(5), 386 (2011)

    Article  Google Scholar 

  12. Kedzierski, J., Hsu, P. -L., Healey, P., Wyatt, P. W., Keast, C. L., Sprinkle, M., Berger, C., de Heer, W. A.: IEEE Trans. Electron Devices 55(8), 2078 (2008)

    Article  ADS  Google Scholar 

  13. Lee, G. H., Kim, S., Jhi, S. H., Lee, H. J.: Ultimately short ballistic vertical graphene Josephson junctions. Nat. Commun. 6, 6181 (2015)

    Article  ADS  Google Scholar 

  14. Heersche, H. B., Jarillo-Herrero, P., Oostinga, J. B., Vandersypen, L. M. K., Morpurgo, A. F.: Induced superconductivity in graphene. Solid State Commun. 143(1–2), 72 (2007)

    Article  ADS  Google Scholar 

  15. Du, X., Skachko, I., Andrei, E. Y.: Josephson current and multiple Andreev reflections in graphene SNS junctions. Phys. Rev. B 77, 184507 (2008)

    Article  ADS  Google Scholar 

  16. Borzenets, I. V., Coskun, U. C., Jones, S. J., Finkelstein, G.: Phase Diffusion in Graphene-Based Josephson Junctions. Phys. Rev. Lett. 107(13), 137005 (2011)

    Article  ADS  Google Scholar 

  17. Lee, G.-H., Jeong, D., Choi, J.-H., Doh, Y.-J., Lee, H.-J.: Electrically Tunable Macroscopic Quantum Tunneling in a Graphene-Based Josephson Junction. Phys. Rev. Lett. 107(14), 146605 (2011)

    Article  ADS  Google Scholar 

  18. Popinciuc, M., Calado, V. E., Liu, X. L., Akhmerov, A. R., Klapwijk, T. M., Vandersypen, L. M. K.: Zero-bias conductance peak and Josephson effect in graphene-NbTiN junctions. Phys. Rev. B 85(20), 205404 (2012)

    Article  ADS  Google Scholar 

  19. Coskun, U. C., Brenner, M., Hymel, T., Vakaryuk, V., Levchenko, A., Bezryadin, A.: Phys. Rev. Lett. 108(9), 097003 (2012)

    Article  ADS  Google Scholar 

  20. Lafont, F., Ribeiro-Palau, R., Kazazis, D., Michon, A., Couturaud, O., Consejo, C., Chassagne, T., Zielinski, M., Portail, M., Jouault, B., Schopfer, F., Poirier, W.: Quantum Hall resistance standards from graphene grown by chemical vapour deposition on silicon carbide. Nat. Commun. 6, 6806 (2015)

    Article  ADS  Google Scholar 

  21. Ribeiro Palau, R., Lafont, F., Brun Picard, J., Kazazis, D., Michon, A., Cheynis, F., Couturaud, O., Consejo, C., Jouault, B., Poirier, W., Schopfer, F.: Quantum Hall resistance standard in graphene devices under relaxed experimental conditions. Nat. Nanotechnol. 10(11), 965 (2015)

    Article  ADS  Google Scholar 

  22. Li, X. S., Cai, W. W., An, J. H., Kim, S., Nah, J., Yang, D. X., Piner, R., Velamakanni, A., Jung, I., Tutuc, E., Banerjee, S. K., Colombo, L., Ruoff, R. S.: Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324(5932), 1312 (2009)

    Article  ADS  Google Scholar 

  23. Poirier, W., Lafont, F., Djordjevic, S., Schopfer, F., Devoille, L.: A programmable quantum current standard from the Josephson and the quantum Hall effects. J. Appl. Phys. 115(4), 044509 (2014)

    Article  ADS  Google Scholar 

  24. Komatsu, K., Li, C., Autier-Laurent, S., Bouchiat, H., Guéron, S.: Superconducting proximity effect in long superconductor/graphene/superconductor junctions: From specular Andreev reflection at zero field to the quantum Hall regime. Phys. Rev. B 86, 115412 (Sep 2012)

  25. Black-Schaffer, A. M., Doniach, S.: Resonating valence bonds and mean-field d-wave superconductivity in graphite. Phys. Rev. B 75, 134512 (Apr 2007)

  26. Nandkishore, R., Levitov, L. S., Chubukov, A. V.: Superconducting states of pure and doped graphene. Nat. Phys. 8, 158 (2012)

    Article  Google Scholar 

  27. Uchoa, B., Castro Neto, A. H.: Superconducting states of pure and doped graphene. Phys. Rev. Lett. 98, 146801 (2007)

    Article  ADS  Google Scholar 

  28. Allain, A., Han, Z., Bouchiat, V.: Superconducting states of pure and doped graphene. Nat. Mater. 11, 590 (2012)

    Article  ADS  Google Scholar 

  29. Li, K., Feng, X., Zhang, W., Ou, Y., Chen, L., He, K., Wang, L.-L., Guo, L., Liu, G., Xue, Q.-K., Ma, X.: Superconductivity in Ca-intercalated epitaxial graphene on silicon carbide. Appl. Phys. Lett. 103(6), 062601 (2013)

    Article  ADS  Google Scholar 

  30. Ludbrook, B. M., Levy, G., Nigge, P., Zonno, M., Schneider, M., Dvorak, D. J., Veenstra, C. N., Zhdanovich, S., Wong, D., Dosanjh, P., Straßer, C., Stöhr, A., Forti, S., Ast, C. R., Starke, U., Damascelli, A.: Evidence for superconductivity in Lidecorated monolayer graphene. Proc. Natl. Acad. Sci. 112(38), 11795 (2015)

    Article  ADS  Google Scholar 

  31. Tiwari, A. P., Shin, S., Hwang, E., Jung, S. -G., Park, T., Lee, H.: Superconductivity at 7.4 K in Few Layer Graphene by Li-intercalation. ArXiv e-prints (2015)

  32. Han, Z., Allain, A., Arjmandi-Tash, H., Tikhonov, K., Feigel’man, M., Sacepe, B., Bouchiat, V.: Collapse of superconductivity in a hybrid tin-graphene Josephson junction array. Nat. Phys. 10(5), 380 (2014)

    Article  Google Scholar 

  33. Massarotti, D., Jouault, B., Rouco, V., Charpentier, S., Bauch, T., Michon, A., De Candia, A., Lucignano, P., Lombardi, F., Tafuri, F., Tagliacozzo, A.: Incipient berezinskii-kosterlitz-thouless transition in two-dimensional coplanar josephson junctions. Phys. Rev. B 94, 054525 (2016)

    Article  ADS  Google Scholar 

  34. Tinkham, M.: Introduction to Superconductivity. McGraw-Hill, Singapore (1996)

    Google Scholar 

  35. Palau, A., Puig, T., Obradors, X., Pardo, E., Navau, C., Sanchez, A., Usoskin, A., Freyhardt, H. C., Fernández, L., Holzapfel, B., Feenstra, R.: Simultaneous inductive determination of grain and intergrain critical current densities of YBa2Cu3O7 coated conductors. Appl. Phys. Lett. 84(2), 230 (2004)

    Article  ADS  Google Scholar 

  36. Palau, A., Puig, T., Obradors, X., Jooss, C.: Simultaneous determination of grain and grain-boundary critical currents in YBa2Cu3O7-coated conductors by magnetic measurements. Phys. Rev. B 75, 054517 (2007)

    Article  ADS  Google Scholar 

  37. Ji, L., Rzchowski, M. S., Anand, N., Tinkham, M.: Magnetic-field-dependent surface resistance and two-level critical-state model for granular superconductors. Phys. Rev. B 47, 470–483 (1993)

    Article  ADS  Google Scholar 

  38. José, J. V.: 40 Years of Berezinskii-Kosterlitz-Thouless Theory. World Scientific, Singapore (2013)

    Book  MATH  Google Scholar 

  39. Jabakhanji, B., Michon, A., Consejo, C., Desrat, W., Portail, M., Tiberj, A., Paillet, M., Zahab, A., Cheynis, F., Lafont, F., Schopfer, F., Poirier, W., Bertran, F., Le Fèvre, P., Taleb-Ibrahimi, A., Kazazis, D., Escoffier, W., Camargo, B. C., Kopelevich, Y., Camassel, J., Jouault, B.: Tuning the transport properties of graphene films grown by CVD on SiC(0001): Effect of in situ hydrogenation and annealing. Phys. Rev. B 89, 085422 (2014)

    Article  ADS  Google Scholar 

  40. Jouault, B., Charpentier, S., Massarotti, D., Michon, A., Paillet, M., Huntzinger, J. R., Tiberj, A., Zahab, A. -A., Bauch, T., Lucignano, P., Tagliacozzo, A., Lombardi, F., Tafuri, F.: Josephson coupling in junctions made of monolayer graphene grown on SiC. J. Supercond. Nov. Magn. 29(5), 1145–1150 (2016)

    Article  Google Scholar 

  41. Tanabe, S., Sekine, Y., Kageshima, H., Nagase, M., Hibino, H.: Carrier transport mechanism in graphene on SiC(0001). Phys. Rev. B 84, 115458 (2011)

    Article  ADS  Google Scholar 

  42. Speck, F., Jobst, J., Fromm, F., Ostler, M., Waldmann, D., Hundhausen, M., Weber, H.B., Seyller, T.: The quasifree- standing nature of graphene on H-saturated SiC(0001). Appl. Phys. Lett. 99(12), 122106 (2011)

    Article  ADS  Google Scholar 

  43. Miao, F., Bao, W., Zhang, H., Lau, C. N.: Premature switching in graphene Josephson transistors. Solid State Commun. 149(27–28), 1046 (2009)

    Article  ADS  Google Scholar 

  44. Larkin, T. I., Bol’ginov, V. V., Stolyarov, V. S., Ryazanov, V. V., Vernik, I. V., Tolpygo, S. K., Mukhanov, O. A.: Ferromagnetic Josephson switching device with high characteristic voltage. Appl. Phys. Lett. 100(22) (2012)

  45. Ishii, C.: Josephson currents through junctions with normal metal barriers. Prog. Theor. Phys. 44(6), 1525–1547 (1970)

    Article  ADS  Google Scholar 

  46. Giuliano, D., Affleck, I.: The josephson current through a long quantum wire. J. Stat. Mech. Theory Exper. 2013(02), P02034 (2013)

    Article  MathSciNet  Google Scholar 

  47. Jeong, D., Choi, J. -H., Lee, G. -H., Jo, S., Doh, Y. -J., Lee, H. -J.: Observation of supercurrent in PbIn-graphene-PbIn Josephson junction. Phys. Rev. B 83, 094503 (2011)

    Article  ADS  Google Scholar 

  48. Wu, Y., Perebeinos, V., Lin, Y. M., Low, T., Xia, F., Avouris, P.: Quantum Behavior of Graphene Transistors near the Scaling Limit. Nano Lett. 12(3), 1417 (2012)

    Article  ADS  Google Scholar 

  49. Giovannetti, G., Khomyakov, P. A., Brocks, G., Karpan, V. M., van den Brink, J., Kelly, P. J.: Doping Graphene with Metal Contacts. Phys. Rev. Lett. 101, 026803 (2008)

    Article  ADS  Google Scholar 

  50. Cheianov, V. V., Fal’ko, V. I.: Selective transmission of Dirac electrons and ballistic magnetoresistance of np junctions in graphene. Phys. Rev. B 74, 041403 (2006)

    Article  ADS  Google Scholar 

  51. Rosenthal, P. A., Beasley, M. R., Char, K., Colclough, M. S., Zaharchuk, G.: Flux focusing effects in planar thinfilm grainboundary Josephson junctions. Appl. Phys. Lett. 59(26), 3482 (1991)

    Article  ADS  Google Scholar 

  52. Tafuri, F., Kirtley, J. R.: Rep. Prog. Phys. 68(11), 2573 (2005)

    Article  ADS  Google Scholar 

  53. Arpaia, R., Arzeo, M., Nawaz, S., Charpentier, S., Lombardi, F., Bauch, T.: Ultra low noise YBa2Cu3O7 δ nano superconducting quantum interference devices implementing nanowires. Appl. Phys. Lett. 104(7), 072603 (2014)

    Article  ADS  Google Scholar 

  54. De Gennes, P. G.: Superconductivity of Metals and Alloys. Advanced Book Classics. Perseus, Cambridge (1999)

    Google Scholar 

  55. Bean, C. P., Livingston, J. D.: Surface barrier in type-II superconductors. Phys. Rev. Lett. 12, 14 (1964)

    Article  ADS  Google Scholar 

  56. Aladyshkin, A.Y., Silhanek, A.V., Gillijns, W., Moshchalkov, V.V.: Topical review: nucleation of superconductivity and vortex matter in superconductor-ferromagnet hybrids. Supercond. Sci. Technol. 22(5), 053001 (2009)

    Article  ADS  Google Scholar 

  57. Ao, P., Thouless, D. J.: Berry’s phase and the magnus force for a vortex line in a superconductor. Phys. Rev. Lett. 70, 2158 (1993)

    Article  ADS  Google Scholar 

  58. Other samples have been patterned in which the width of the gap between the contacts is more like a constriction with w∼1μ m or smaller and no revival could be measured, not even a well defined supercurrent. nevertheless some weak non linearity in the I/V characteristics is also present in the shorter channel samples. This seems to prove that space for accomodating vortex dynamics is essential to the mechanism of revival (T. Bauch, private communication).

  59. Barone, A., Paternò, G.: Physics and applications of the Josephson effect. Wiley (1982)

  60. Martinis, J. M., Kautz, R. L.: Classical phase diffusion in small hysteretic Josephson junctions. Phys. Rev. Lett. 63, 1507–1510 (1989)

    Article  ADS  Google Scholar 

  61. Stornaiuolo, D., Rotoli, G., Massarotti, D., Carillo, F., Longobardi, L., Beltram, F., Tafuri, F.: Resolving the effects of frequency-dependent damping and quantum phase diffusion in YBa2Cu3O7−x Josephson junctions. Phys. Rev. B 87, 134517 (2013)

    Article  ADS  Google Scholar 

  62. Massarotti, D., Longobardi, L., Galletti, L., Stornaiuolo, D., Montemurro, D., Pepe, G., Rotoli, G., Barone, A., Tafuri, F.: Escape dynamics in moderately damped Josephson junctions (review article). Low Temp. Phys. 38(4), 263–272 (2012)

    Article  ADS  Google Scholar 

  63. Svistunov, V. M., D’jachenko, A. I., Tarenkov, V. Y.: Resistive vortices and two-dimensional transition in aluminum films. J. Low Temp. Phys. 57(5), 619–627 (1984)

    Article  ADS  Google Scholar 

  64. Ambegaokar, V., Halperin, B. I.: Voltage due to thermal noise in the dc josephson effect. Phys. Rev. Lett. 22, 1364–1366 (1969)

    Article  ADS  Google Scholar 

  65. Larkin, A., Varlamov, A.: Theory of Fluctuations in Superconductors. Oxford Scholarship Online (2007)

  66. Halperin, B. I., Nelson, D. R.: Resistive transition in superconducting films. J. Low Temp. Phys. 36(5-6), 599 (1979)

    Article  ADS  Google Scholar 

  67. Fiory, A. T., Hebard, A. F., Glaberson, W. I.: Superconducting phase transitions in indium/indium-oxide thin-film composites. Phys. Rev. B 28, 5075 (1983)

    Article  ADS  Google Scholar 

  68. Mondal, M., Kumar, S., Chand, M., Kamlapure, A., Saraswat, G., Seibold, G., Benfatto, L., Raychaudhuri, P.: Role of the vortex-core energy on the Berezinskii-Kosterlitz-Thouless transition in thin films of NbN. Phys. Rev. Lett. 107, 217003 (2011)

    Article  ADS  Google Scholar 

  69. note that our b is defined as in Halperin & Nelson and in Fiory et al, but it is not the one appearing in Mondal et al: \(b_{m} \rightarrow \sqrt {b\:t_{c}}\)

  70. Benfatto, L., Castellani, C., Giamarchi, T.: Berezinskii-Kosterlitz-Thouless Transition within the Sine- Gordon Approach: The Role of the Vortex-Core Energy. In: 40 Years of Berezinskii-Kosterlitz-Thouless Theory, pp 161–199. World Scientific, Singapore

  71. Yong, J., Lemberger, T. R., Benfatto, L., Ilin, K., Siegel, M.: Robustness of the Berezinskii-Kosterlitz-Thouless transition in ultrathin NbN films near the superconductor-insulator transition. Phys. Rev. B 87, 184505 (2013)

    Article  ADS  Google Scholar 

  72. Kessler, B. M., Girit, Ç. Ö., Zettl, A., Bouchiat, V.: Tunable superconducting phase transition in metal-decorated graphene sheets. Phys. Rev. Lett. 104, 047001 (2010)

    Article  ADS  Google Scholar 

  73. Allain, A., Han, Z., Bouchiat, V.: Electrical control of the superconducting-to-insulating transition in graphene-metal hybrids. Nat. Mater. 11, 590 (2012)

    Article  ADS  Google Scholar 

  74. Giuliano, D., Sodano, P.: Boundary field theory approach to the renormalization of SQUID devices. Nucl. Phys. B 770(3), 332–370 (2007)

    Article  ADS  MATH  Google Scholar 

  75. Giuliano, D., Sodano, P.: Competing boundary interactions in a Josephson junction network with an impurity. Nucl. Phys. B 837(3), 153–185 (2010)

    Article  ADS  MATH  Google Scholar 

  76. Cirillo, A., Mancini, M., Giuliano, D., Sodano, P.: Enhanced coherence of a quantum doublet coupled to Tomonaga-Luttinger liquid leads. Nucl. Phys. B 852(1), 235–268 (2011)

    Article  ADS  MATH  Google Scholar 

  77. Mezzetti, E., Chiodoni, A., Gerbaldo, R., Ghigo, G., Gozzelino, L., Laviano, F., Minetti, B., Amato, A., Rovelli, A., Cherubini, R.: Nanostructured microsize ybco mesas for applications as field sensors. Physica C: Superconductivity and its Applications 468(7–10), 817–819 (2008)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors thank the Swedish Foundation for Strategic Research (SSF) under the project “Graphene based high frequency electronics” at Chalmers, where the samples were patterned and the collaboration of S. Charpentier and T. Bauch. Discussions with L. Benfatto, V.Bouchiat, P. Brouwer and Ya.V. Kopelevich are gratefully acknowledged. Work supported by PICS CNRS-CNR 2014-2016 “Transport phenomena and Proximity-induced Superconductivity in Graphene junctions,” FIRB “HybridNanoDev” RBFR1236VV (Italy) and by EU FP7, under grant agreement no 604391 Graphene Flagship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Massarotti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Massarotti, D., Jouault, B., Rouco, V. et al. Hysteretic Critical State in Coplanar Josephson Junction with Monolayer Graphene Barrier. J Supercond Nov Magn 30, 5–14 (2017). https://doi.org/10.1007/s10948-016-3871-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-016-3871-x

Keywords

Navigation