Skip to main content
Log in

Analysis of Reflectance Properties in 1D Photonic Crystal Containing Metamaterial and High-Temperature Superconductor

  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

In the present work, reflectance properties of one-dimensional photonic crystal (1D PC) containing a metamaterial and high-temperature superconductor have been investigated theoretically and analyzed. The reflectance/transmittance spectrum of the proposed structure is obtained by using the characteristic or transfer-matrix method (TMM). The results show that by increasing the thickness of the metamaterial layer, the width of the second reflection band decreases while the width of the first reflection band remains almost the same though it shifts towards the higher frequency side. In addition to this, a new band gap arises in the lower side of frequency. But, when the thickness of the superconductor layer is increased, the width of both the bands increases and no additional band arises in this case. Moreover, the reflection band is also affected by varying the operating temperature of the superconducting layer and the results show that bands get narrower by increasing the operating temperature. Finally, the effect of incident angle on the reflection band has been discussed for both transverse electric (TE) and transverse magnetic (TM) polarizations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Yablonovitch, E: Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58, 2059–2062 (1987)

    Article  ADS  Google Scholar 

  2. John, S: Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 58, 2486–2489 (1987)

    Article  ADS  Google Scholar 

  3. Weiss, S. M., Haurylau, M., Fauchet, P. M.: Tunable photonic bandgap structures for optical interconnects. Opt. Mater. 27, 740–745 (2005)

    Article  ADS  Google Scholar 

  4. Srivastava, S. K., Ojha, S. P.: Broadband optical reflector based on Si/SiO2 one-dimensional graded photonic crystal structure. Mod. Opt. 56, 33–40 (2009)

    Article  ADS  Google Scholar 

  5. Fink, Y., Winn, J. N., Fan, S., Chen, C., Michel, J., Joannopoulos, J. D., Thomas, E. L.: A dielectric omnidirectional reflector. Science 282, 1679–1682 (1998)

    Article  ADS  Google Scholar 

  6. Chigrin, D. N., Lavrinenko, A. V., Yarotsky, D. A., Gaponenko, S. V.: Observation of total omnidirectional reflection from a one-dimensional dielectric lattice. Appl. Phys. A 68, 25–28 (1999)

    Article  ADS  Google Scholar 

  7. Noda, S., Yokoyama, M., Imada, M., Chutinan, A., Mochizuki, M.: Polarization mode control of 2D photonic crystal laser by unit cell design structure. Science 293, 1123–1125 (2001)

    Article  ADS  Google Scholar 

  8. Mekis, A., Chen, J. C., Kurland, I., Fan, S., Villeneuve, P. R., Joannopoulos, J. D.: High transmission through sharp bends in photonic crystal waveguides. Phys. Rev. Lett. 77, 3787–1390 (1996)

    Article  ADS  Google Scholar 

  9. Veselago, V. G.: The electrodynamics of substances with simultaneously negative values of ε and μ. Sov. Phys. Usp. 10, 509–514 (1968)

    Article  ADS  Google Scholar 

  10. Pendry, J. B.: Negative refraction makes perfect lens. Phys. Rev. Lett. 85, 3966–3369 (2000)

    Article  ADS  Google Scholar 

  11. Pendry, J. B.: Negative refraction makes light run backward in time. Phys. World 13, 27–29 (2000)

    Article  Google Scholar 

  12. Smith, D. R., Padilla, W. J., Vier, D. C., Nemat-Nasser, S. C., Schultz, S. Phys. Rev. Lett. 84, 4184–4187 (2000)

    Article  ADS  Google Scholar 

  13. Shelby, R. A., Smith, D. R., Schultz, S.: Experimental verification of a negative index of refraction. Science 292, 77–79 (2001)

    Article  ADS  Google Scholar 

  14. Li, J., Zhou, L., Chan, C. T., Sheng, P.: Photonic band gap from a stack of positive and negative index materials. Phys. Rev. Lett. 90, 083901 (2003)

    Article  ADS  Google Scholar 

  15. Srivastava, S. K., Aghzamali, A.: Study of optical reflectance properties in 1D annular photonic crystal containing double negative (DNG) metamaterials. Physica B 489, 67–72 (2016)

    Article  ADS  Google Scholar 

  16. Srivastava, S. K., Ojha, S. P.: Enhancement of omnidirectional reflection bands in one-dimensional photonic crystals with left-handed materials. PIER 68, 91–111 (2007)

    Article  Google Scholar 

  17. Shadrivov, I. V., Sukhorukov, A. A., Kivshar, Y. S.: Beam shaping by a periodic structure with negative refraction. Appl. Phys. Lett. 82, 3820–3822 (2003)

    Article  ADS  Google Scholar 

  18. Ramakrishna, S. A.: Physics of negative refractive index material. Rep. Prog. Phys. 68, 449–521 (2005)

    Article  ADS  Google Scholar 

  19. Parimi, P. V., Lu, W. T., Vodo, P., Sridhar, S.: Negative refraction and left-handed electromagnetism in microwave photonic crystals. Nature 426, 404 (2003)

    Article  ADS  Google Scholar 

  20. Wang, L. G., Chen, H., Zhu, S. Y.: Omnidirectional gap and defect mode of one-dimensional photonic crystals with single negative materials. Phys. Rev. 70, 245102 (2004)

    Article  Google Scholar 

  21. Jiang, H., Chen, H., Li, H., Zhang, Y., Zi, J., Zhu, S.-Y.: Properties of one-dimensional photonic crystals containing single-negative materials. Phys. Rev. E 69, 066607 (2004)

    Article  ADS  Google Scholar 

  22. Hsu, H.-T., Ting, K.-C., Yang, T.-J., Wu, C.-J.: Analysis of angle-dependent unusual transmission in lossy single-negative (SNG) materials. Solid State Commun. 150, 644–647 (2010)

    Article  ADS  Google Scholar 

  23. Aghajamali, A., Alamfard, T., Barati, M: Effects of loss factors on zero permeability and zero permittivity gaps in 1D photonic crystal containing DNG materials. Phys. B Cond. Matter. 454, 170–174 (2014)

    Article  ADS  Google Scholar 

  24. Mishra, A., Awasthi, S. K., Srivastava, S. K., Malaviya, U., Ojha, S. P.: Tunable and omnidirectional filters based on one-dimensional photonic crystals composed of single negative materials. J. Opt. Soc. Am. B 28, 1416–1422 (2011)

    Article  ADS  Google Scholar 

  25. Deng, X. H., Liu, N. H.: Polarization dependent angle fitters based on one-dimensional photonic crystals using mu-negative materials. J. Mod. Opt. 56, 482 (2009)

    Article  ADS  Google Scholar 

  26. El-Naggar, S. A., Elsayed, H. A., Aly, A. H.: Maximization of photonic bandgaps in two-dimensional superconductor photonic crystals. J. Supercond. Nov. Magn. 27, 1615–1621 (2014)

    Article  Google Scholar 

  27. Ooi, C. H. R., Yeung, T. C. A., Kam, C. H., Lim, T. K.: Photonic band gap in a superconductor-dielectric superlattice. Phys. Rev. B 61, 5920–5923 (2000)

    Article  ADS  Google Scholar 

  28. Takeda, H., Yoshino, K.: Tunable photonic band schemes in two dimensional photonic crystals composed of copper oxide high temperature superconductors. Phys. Rev. B 67, 245109 (2003)

    Article  ADS  Google Scholar 

  29. Berman, O. L., Lozovik, Y. E., Eiderman, S. L., Coalson, R. D.: Superconducting photonic crystals: numerical calculations of the band structure. Phys. Rev. B 74, 092505 (2006)

    Article  ADS  Google Scholar 

  30. Chen, Y., Zhang, C., Zhu, Y., Zhu, S., Ming, N.: Tunable photonic crystals with superconductor constituents. Mater. Lett. 55, 12–16 (2002)

    Article  Google Scholar 

  31. Srivastava, S. K.: Study of defect modes in one-dimensional photonic crystal structure containing high and low Tc superconductor as defect layer. J. Supercond. Nov. Magn. 27, 101–114 (2014)

    Article  Google Scholar 

  32. Aly, A. H., Ryu, S. W., Hsu, H. T., Wu, C. J.: THz transmittance in one-dimensional superconducting nanomaterial dielectric superlattice. Mater. Chem. Phys. 113, 382–384 (2009)

    Article  Google Scholar 

  33. Wu, C. J., Chen, M. S., Yang, T. J.: Photonic band structure for a superconductor–dielectric superlattice. Phys. C Supercond. 432(113-139), 113 (2005)

    ADS  Google Scholar 

  34. Tinkham, M.: Introduction to superconductivity, 2nd edn. McGraw-Hill, New York (1996)

    Google Scholar 

  35. Yeh, P.: Optical waves in layered media. Wiley, New York (1988)

    Google Scholar 

  36. Born, M., Wolf, E.: Principles of optics. Cambridge University Press, Cambridge (1998)

    Google Scholar 

Download references

Acknowledgments

One of authors, Dr. Sanjeev K Srivastava, is also thankful to the Amity Institute of Applied Sciences, Amity University Uttar Pradesh, Noida, India, for providing the necessary facilities for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjeev K Srivastava.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srivastava, S.K., Aghajamali, A. Analysis of Reflectance Properties in 1D Photonic Crystal Containing Metamaterial and High-Temperature Superconductor. J Supercond Nov Magn 30, 343–351 (2017). https://doi.org/10.1007/s10948-016-3788-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-016-3788-4

Keywords

Navigation