Skip to main content
Log in

Numerical Study on Overcurrent Process of High-Temperature Superconducting Coated Conductors

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Overcurrent performance of high-temperature superconducting (HTS) coated conductor (CC) is one of the most crucial parameters for industrial applications, especially in superconducting fault current limiters (SFCLs). Thus, numerical study of overcurrent process becomes desirable in design of these superconducting devices. In this paper, a field-circuit combined model is introduced to study the overcurrent process of HTS CCs. This model is built by both MATLAB and COMSOL. Circuit parameters, electromagnetic, and temperature distributions are individually calculated by different software. Temperature (T), magnetic intensity (B), and generated heat (Q) are used as real-time intermediate exchanging variables. Accuracy of this model is verified by short-fault experiments on straight HTS CC. Further applications, such as reclosing process and superconducting coils are both performed. Results obtained in this paper prove the validity of this model; this model can be helpful in future design of superconducting devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Dommerque, R., Krämer, S., Hobl, A., Böhm, R., Bludau, M., Bock, J., Klaus, D., Piereder, H., Wilson, A., Krüger, T., Pfeiffer, G.: First commercial medium voltage superconducting fault-current limiters: production, test and installation. Supercond. Sci. Technol. 23(1), 034020 (2010)

    Article  ADS  Google Scholar 

  2. Kojima, H., Kotari, M., Kito, T., Hayakawa, N., Hanai, M., Okubo, H.: Current limiting and recovery characteristics of 2 MVA class superconducting fault current limiting transformer (SFCLT). IEEE Trans. Appl. Supercond. 21(1), 1401–1404 (2011)

    Article  ADS  Google Scholar 

  3. Li, H., Wang, Y., Zhu, Y., Wu, R., Dong, L., Dou, K.: Design and testing of a high-temperature superconducting pulsed-power transformer. IEEE Trans. Appl. Supercond. 22(2), 5500205–5500205 (2012)

    Article  Google Scholar 

  4. Hong, Z., Campbell, A.M., Coombs, T.A.: Numerical solution of critical state in superconductivity by finite element software. Supercond. Sci. Technol. 19(12), 1246 (2006)

    Article  ADS  Google Scholar 

  5. Zhang, M., Coombs, T.A.: 3D modeling of high-Tc superconductors by finite element software. Supercond. Sci. Technol. 25(1), 015009 (2011)

    Article  ADS  Google Scholar 

  6. Grilli, F., Brambilla, R., Sirois, F., Stenvall, A., Memiaghe, S.: Development of a three-dimensional finite-element model for high-temperature superconductors based on the H-formulation. Cryogenics 53, 142–147 (2013)

    Article  ADS  Google Scholar 

  7. Zermeño, V.M., Grilli, F.: 3D modeling and simulation of 2G HTS stacks and coils. Supercond. Sci. Technol. 27(4), 044025 (2014)

    Article  ADS  Google Scholar 

  8. Sirois, F., Roy, F., Dutoit, B.: Assessment of the computational performances of the semi-analytical method (SAM) for computing 2-D current distributions in superconductors. IEEE Trans. Appl. Supercond. 19(1), 3600–3604 (2009)

    Article  ADS  Google Scholar 

  9. Grilli, F., Sirois, F., Zermeno, V.M., Vojenčiak, M.: Self-consistent modeling of the of HTS devices: how accurate do models really need to be. IEEE Trans. Appl. Supercond. 24(6), 1–8 (2014)

    Article  Google Scholar 

  10. Chan, W.K., Masson, P.J., Luongo, C., Schwartz, J.: Three-dimensional micrometer-scale modeling of quenching in high-aspect-ratio coated conductor tapes—part I: model development and validation. IEEE Trans. Appl. Supercond. 20(6), 2370–2380 (2010)

    Article  Google Scholar 

  11. Chan, W.K., Masson, P.J., Luongo, C.A., Schwartz, J.: Influence of inter-layer contact resistances on quench propagation in coated conductors. IEEE Trans. Appl. Supercond. 19(1), 2490–2495 (2009)

    Article  ADS  Google Scholar 

  12. Zhang, M., Matsuda, K., Coombs, T.A.: New application of temperature-dependent modelling of high temperature superconductors: quench propagation and pulse magnetization. J. Appl. Phys. 112(4), 043912 (2012)

    Article  ADS  Google Scholar 

  13. Chen, Y., Li, S., Sheng, J., Jin, Z., Hong, Z., Gu, J.: Experimental and numerical study of co-ordination of resistive-type superconductor fault current limiter and relay protection. J. Supercond. Nov. Magn. 26(11), 3225–3230 (2013)

    Article  Google Scholar 

  14. Wang, Y., Song, H., Xu, D., Li, Z.Y., Jin, Z., Hong, Z.: An equivalent circuit grid model for no-insulation HTS pancake coils. Supercond Sci Technol 28(4), 045017 (2015)

    Article  ADS  Google Scholar 

  15. Wang, X., Hahn, S., Kim, Y., Bascuñán, J., Voccio, J., Lee, H., Iwasa, Y.: Turn-to-turn contact characteristics for an equivalent circuit model of no-insulation ReBCO pancake coil. Supercond. Sci. Technol. 26(1), 035012 (2013)

    Article  ADS  Google Scholar 

  16. Sheng, J., Jin, Z., Lin, B., Ying, L., Yao, L., Zhang, J., Li, Y., Hong, Z.: Electrical-thermal coupled finite element model of high temperature superconductor for resistive type fault current limiter. IEEE Trans. Appl. Supercond. 22(1), 5602004–5602004 (2012)

    Article  Google Scholar 

  17. Zhang, M., Kvitkovic, J., Pamidi, S.V., Coombs, T.A.: Experimental and numerical study of a YBCO pancake coil with a magnetic substrate. Supercond. Sci. Technol. 25(12), 125020 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Power Generation and Electricity Delivery of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea Government Ministry of Knowledge Economy (2014101050231B).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Sheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheng, J., Hu, D., Ryu, K. et al. Numerical Study on Overcurrent Process of High-Temperature Superconducting Coated Conductors. J Supercond Nov Magn 30, 3263–3270 (2017). https://doi.org/10.1007/s10948-016-3754-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-016-3754-1

Keywords

Navigation