Skip to main content
Log in

Structural, Morphological and Ferromagnetic Properties of Pure and (Mn, Co) Codoped CuO Nanostructures

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Ferromagnetic oxide semiconductor of pure and (Mn, Co) codoped CuO nanocrystals were synthesized by a chemical coprecipitation method. The phase structure, morphology and room temperature ferromagnetism were investigated by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, transmission electron microscopy (TEM) and vibrating sample magnetometer (VSM). Results of XRD demonstrated that both the undoped and (Mn, Co) codoped CuO samples have single phase of CuO monoclinic structure and no secondary phases were detected, suggesting the incorporation of Mn and Co dopants in CuO lattice. The FTIR spectra of all samples showed three main absorption bands attributed to stretching vibrations of Cu–O bond. The morphology of the pure CuO was found to change from nanoparticle to nanorod structure after codoping with Mn and Co ions. The diameter and length of the nanorods were nearly 28–60 and 130–550 nm, respectively. The obtained magnetic hysteresis loops at room temperature confirmed the ferromagnetic nature of all the prepared samples, which was enhanced after the incorporation of Mn and Co ions into CuO lattice. The effect of the codoped ions on the structure and ferromagnetism are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Dietl, T.: Why ferromagnetic semiconductor? Postêpy Fizyki 52 (Suppl.) (2001), presented at the IV International School and Symposium on Physics in Materials, Jaszowiec, Poland, Sept. 23-29, 2001, and at the 34th Meeting of the Polish Physicists, Toruñ, Sept. 17–20.

  • Kalyani, V.L., Agrawal, V.: Spintronics—a vision for future in electronics and computers. J. Manag. Eng. Inf. Technol. 2, 30–36 (2015).

    Google Scholar 

  • Rahi, S.B., Rastogi, P.: A review report for next generation of CMOS technology as spintronics: fundamentals, applications and future. Int. J. Adv. Eng. Technol. 6, 696–702 (2013).

    Google Scholar 

  • Zunger, A., Lany, S., Raebiger, H.: The quest for dilute ferromagnetism in semiconductors: guides and misguides by theory. Physics. 3, 53 (2010).

    Article  Google Scholar 

  • Xu, Y.B., Ahmad, E., Claydon, J.S., Lu, Y.X., Hassan, S.S.A., Will, I.G., Cantor, B.: Hybrid magnetic/semiconductor spintronic materials and devices. J. Magn. Magn. Mater. 304, 69–74 (2006).

    Article  ADS  Google Scholar 

  • Gautam, A.: Spintronics—a new hope for the digital world. Int. J. Sci. Res. Publ. 2, 1–5 (2012).

    Google Scholar 

  • Chambers, S.A., Droubay, T.C., Wang, C.M., Rosso, K.M., Heald, S.M., Schwartz, D.A., Kittilstved, K.R., Gamelin, D.R.: Ferromagnetism in oxide semiconductors. Materials Today. 9, 28–35 (2006).

    Article  Google Scholar 

  • Yu-Feng, T., Shu-Jun, H., Shi-Shen, Y., Liang-Mo, M.: Oxide magnetic semiconductors: materials, properties, and devices. Chin. Phys. B. 22, 088505–1: 088505-19 (2013).

    Google Scholar 

  • Dietl, T., Ohno, H., Matsukura, F., Cibert, J., Ferrant, D.: Zener model description of ferromagnetism in zinc-blende magnetic semiconductors. Science. 287, 1019–1022 (2000).

    Article  ADS  Google Scholar 

  • Matsumoto, Y., Murakami, M., Shono, T., Hasegawa, T., Fukumora, T., Kawasaki, M., Ahmet, P., Chikyow, T., Koshihara, S., Koinuma, H.: Room-temperature ferromagnetism in transparent transition metal-doped titanium dioxide. Science. 291, 854–856 (2001).

    Article  ADS  Google Scholar 

  • Kaushal, A., Bansal, P., Vishnoi, R., Choudhary, N., Kaur, D.: Room-temperature ferromagnetism in Sn 1−xMn x O 2 nanocrystalline thin films prepared by ultrasonic spray pyrolysis. Physica B. 404, 3732–3738 (2009).

    Article  ADS  Google Scholar 

  • El-Hilo, M., Dakhel, A.A., Ali-Mohamed, A.Y.: Room temperature ferromagnetism in nanocrystalline Ni-doped ZnO synthesized by co-precipitation. J. Magn. Magn. Mater. 321, 2279–2283 (2009).

    Article  ADS  Google Scholar 

  • Raja, S.P., Joseph, D.P., Venkateswaran, C.: Analysis on Cu 0.95Mn 0.05O for ferromagnetic ordering. Mater. Chem. Phys. 113, 67–70 (2009).

    Article  Google Scholar 

  • Sundaresan, A., Rao, C.N.R.: Ferromagnetism as a universal feature of inorganic nanoparticles. Nano Today. 4, 96–106 (2009).

    Article  Google Scholar 

  • Guo, T., Zhang, Y., Luo, Y., Nan, C.-W., Lin, Y.-H.: Magnetical behaviors observed in nanostructured ZnO with different morphologies. Mater. Lett. 108, 273–275 (2013).

    Article  Google Scholar 

  • Khan, G.G., Ghosh, S., Mandal, K.: Origin of room temperature d 0 ferromagnetism and characteristic photoluminescence in pristine SnO 2 nanowires: a correlation. J. Solid State Chem. 186, 278–282 (2012).

    Article  ADS  Google Scholar 

  • Das, S., Majumdar, S., Giri, S.: Room temperature weak ferromagnetism and magnetoconductance in functional CuO film. Appl. Surf. Sci. 257, 10775–10779 (2011).

    Article  ADS  Google Scholar 

  • Xu, Q., Gao, D., Zhang, J., Yang, Z., Zhang, Z., Rao, J., Xue, D.: Observation of room temperature ferromagnetism in pure La 2 O 3 nanoparticles. Appl. Phys. A. 116, 1293–1298 (2014).

    Article  ADS  Google Scholar 

  • Gao, D., Li, J., Li, Z., Zhang, Z., Zhang, J., Shi, H., Xue, D.: Defect-mediated magnetism in pure CaO nanopowders. J. Phys. Chem. C. 114, 11703–11707 (2010).

    Article  Google Scholar 

  • Qian, X., Wei-Peng, W., Zheng, X., Peng, Z., Zheng-Cao, L., Zheng-Jun, Z.: Room temperature ferromagnetism in un-doped amorphous HfO 2 nano-helix arrays. Chin. Phys. B. 24, 057503–1: 057503-6 (2015).

    Google Scholar 

  • Okabayashi, J., Nomura, K., Kono, S., Yamada, Y.: Magnetization enhancement in room-temperature ferromagnetic Fe–Mn co-doped SnO 2. Jpn. J. Appl. Phys. 51, 023003–1: 023003-4 (2012).

    Google Scholar 

  • Issa, B., Obaidat, I.M., Albiss, B.A., Haik, Y.: Magnetic nanoparticles: surface effects and properties related to biomedicine applications. Int J Mol Sci. 14, 21266–21305 (2013).

    Article  Google Scholar 

  • Köseoğlu, Y.: Rapid synthesis of room temperature ferromagnetic Fe and Co co-doped ZnO DMS nanoparticles. Ceram. Int. 41, 11655–11661 (2015).

    Article  Google Scholar 

  • Chang, Y., Wang, P., Sun, Q., Wang, Y., Long, Y.: Room temperature ferromagnetism of (Mn, Fe) codoped ZnO nanowires synthesized by chemical vapor deposition. J. Nanomater. 2011, 1–6 (2011).

    Google Scholar 

  • Manikandan, D., Murugan, R.: Room temperature dilute magnetism in nanoscale Co and Zn co-doped SnO 2. Superlattices Microstruct. 89, 7–14 (2016).

    Article  ADS  Google Scholar 

  • Gülena, Y., Bayansal, F., Şahin, B., H.A., Çetinkara, H., Gü, der S.: Fabrication and characterization of Mn-doped CuO thin films by the SILAR method. Ceram. Int. 39, 6475–6480 (2013).

    Article  Google Scholar 

  • Basith, N.M., Vijaya, J.J., Kennedy, L.J., Bououdina, M., Hussain, S.: Optical and magnetic properties of co-doped CuO flower/plates/particles-like nanostructures. J. Nanosci. Nanotechnol. 14, 2577–2583 (2014).

    Article  Google Scholar 

  • Mageshwari, K., Sathyamoorthy, R.: Lower-shaped CuO nanostructures: synthesis, characterization and antimicrobial activity. J. Mater. Sci. Technol. 29, 909–914 (2013).

    Article  Google Scholar 

  • Erdogan, I.Y., Gullu, O.: Optical and structural properties of CuO nanofilm: its diode application. J. Alloy. Compd. 492, 378–383 (2010).

    Article  Google Scholar 

  • Ethiraj, A. S., Kang, D. J.: Synthesis and characterization of CuO nanowires by a simple wet chemical method. Nanoscale Res. Lett. 7, 70 (2012).

    Article  ADS  Google Scholar 

  • Radhakrishnan, A.A., Beena, B.B.: Structural and optical absorption analysis of CuO nanoparticles. Indian J. Adv. Chem. Sci. 2, 158–161 (2014).

    Google Scholar 

  • Ali, A.G., Dejene, F.B., Swart, H.C.: Effect of Mn doping on the structural and optical properties of sol-gel derived ZnO nanoparticles. Cent. Eur. J. Phys. 10, 478–484 (2012).

    Google Scholar 

  • Kisan, B., Alagarsamy, P.: Room temperature ferromagnetism in finite sized ZnO nanoparticles. Physica B. 448, 115–119 (2014).

    Article  ADS  Google Scholar 

  • Shi, S., Gao, D., Xu, Q., Yang, Xue, Z., D.: Singly-charged oxygen vacancy-induced ferromagnetism in mechanically milled SnO 2 powders. RSC Adv. 4, 45467–45472 (2014).

    Article  Google Scholar 

  • Gao, D., Zhang, J., Zhu, J., Qi, J., Zhang, Z., Sui, W., Shi, H., Xue, D.: Vacancy-mediated magnetism in pure copper oxide nanoparticles. Nanoscale Res. Lett. 5, 769–772 (2010).

    Article  ADS  Google Scholar 

  • Zhao, J.G., Liu, S.J., Yang, S.H., Yang, S.G.: Hydrothermal synthesis and ferromagnetism of CuO nanosheets. Appl. Surf. Sci. 257, 9678–9681 (2011).

    Article  ADS  Google Scholar 

  • Shang, D., Yu, K., Zhang, Y., Xu, J., Wu, J., Xu, Y., Li, L., Zhu, Z.: Magnetic and field emission properties of straw-like CuO nanostructures. Appl. Surf. Sci. 255, 4093–4096 (2009).

    Article  ADS  Google Scholar 

  • Zou, C.W., Wang, J., Liang, F., Xie, W., Shao, L.X., Fu, D.J.: Large-area aligned CuO nanowires arrays: synthesis, anomalous ferromagnetic and CO gas sensing properties. Curr. Appl. Phys. 12, 1349–1354 (2012).

    Article  ADS  Google Scholar 

  • Chandra, S.: Comprehensive inorganic chemistry. New Age International Pvt Ltd (2006).

  • Yu, X., Meng, D., Liu, C., He, X., Wang, Y., Xie, J.: Structure and ferromagnetism of Fe-doped and Fe-and Co-codoped ZnO nanoparticles synthesized by homogeneous precipitation method. Mater. Lett. 86, 112–114 (2012).

    Article  Google Scholar 

  • Huang, X., Li, G., Duan, L., Li, L., Dou, X., Zhang, L.: Formation of ZnO nanosheets with room-temperature ferromagnetism by co-doping with Mn and Ni. Scr. Mater. 60, 984–987 (2009).

    Article  Google Scholar 

  • Subramanyam, K., Sreelekha, N., Reddy, D. A., Murali, G., Poornaprakash, B., Ramu, S., Vijayalakshmi, R.P.: Structural, optical and magnetic properties of chromium and manganese co-doped SnO 2 nanoparticles. Solid State Sci. 39, 74–81 (2015).

    Article  ADS  Google Scholar 

  • Duan, L.B., Rao, G.H., Wang, Y.C., Yu, J., Wang, T.: Magnetization and Raman scattering studies of (Co, Mn) codoped ZnO nanoparticles. J. Appl. Phys. 104, 013909–1: 013909-5 (2008).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Yakout.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yakout, S.M., El-Sayed, A.M. Structural, Morphological and Ferromagnetic Properties of Pure and (Mn, Co) Codoped CuO Nanostructures. J Supercond Nov Magn 29, 2961–2968 (2016). https://doi.org/10.1007/s10948-016-3641-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-016-3641-9

Keywords

Navigation