Skip to main content
Log in

The Role of Quantum Interference Effects in Normal-State Transport Properties of Electron-Doped Cuprates

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

The normal-state resistivity of thin films of the infinite-layer electron-doped cuprate Sr 1−x La x CuO δ has been investigated. Under-doped samples, which clearly show a metal-to-insulator transition (MIT) at low temperatures, have allowed the determination of the fundamental physical mechanism behind the upturn of the resistivity, namely the quantum interference effects (QIEs) in three-dimensional systems. The occurrence of weak localization effects has been unambiguously proven by low-frequency voltage spectral density measurements, which show a linear dependence of the 1/f noise on the applied bias current at low temperatures. The identification of the QIEs at low temperatures has therefore allowed the determination of the high-temperature non-Fermi liquid metallic phase, which is dominated by a linear temperature dependence of the resistivity for all of the samples investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. \(\chi ^{2} = \frac {1}{N} \cdot \sum \limits _{i=1}^{N} \frac {(\rho _{exp}^{i} - \rho _{fit}^{i})^{2}}{(\rho _{fit}^{i})^{2}} \)

References

  1. Armitage, N.P., Fournier, P., Greene, R.L.: Rev. Mod. Phys. 82, 2421 (2010)

    Article  ADS  Google Scholar 

  2. Tanda, S., Honma, M., Nakayama, T.: Phys. Rev. B 43, 8725 (1991)

    Article  ADS  Google Scholar 

  3. Liu, Y., Haviland, D.B., Nease, B., Goldman, A.M.: Phys. Rev. B 47, 5931 (1993)

    Article  ADS  Google Scholar 

  4. Goldman, A.M., Markovic, N.: Phys. Today 51, 39 (1998)

    Article  Google Scholar 

  5. Sekitani, T., Naito, M., Miura, N.: Phys. Rev. B 67, 174503 (2003)

    Article  ADS  Google Scholar 

  6. Hagen, S. J., Xu, X. Q., Jiang, W., Peng, J. L., Li, Z. Y., Greene, R. L.: Phys. Rev. B 45(R), 515 (1992)

    Article  ADS  Google Scholar 

  7. Fournier, P., Mohanty, P., Maiser, E., Darzens, S., Venkatesan, T., Lobb, C.J., Czjzek, G., Webb, R.A., Greene, R.L.: Phys. Rev. Lett. 81, 4720 (1998)

    Article  ADS  Google Scholar 

  8. Charpentier, S., Roberge, G., Godin-Proulx, S., Béchamp-Laganière, X., Truong, K.D., Fournier, P., Rauwel, P.: Phys. Rev. B 81, 104509 (2010)

    Article  ADS  Google Scholar 

  9. Tolpygo, S.K., Lin, J.-Y., Gurvitch, M., Hou, S.Y., Phillips, J.M.: Phys. Rev. B 53, 12454 (1996)

    Article  ADS  Google Scholar 

  10. Orgiani, P., Aruta, C., Balestrino, G., Born, D., Maritato, L., Medaglia, P.G., Stornaiuolo, D., Tafuri, F., Tebano, A.: Phys. Rev. Lett. 98, 036401 (2007)

    Article  ADS  Google Scholar 

  11. Tsuei, C.C., Gupta, A., Koren, G: Physica C 161, 415 (1989)

    Article  ADS  Google Scholar 

  12. Butch, N.P., Jin, K., Kirshenbaum, K., Greene, R.L.: J. Paglione PNAS 109, 8440 (2012)

    Article  Google Scholar 

  13. Jin, K., Butch, N.P., Kirshenbaum, K., Paglione, J., Greene, R.L.: Nature 476, 73 (2011)

    Article  Google Scholar 

  14. Shaked, H., Keane, P. M., Rodriguez, J. C.: Crystal structures of the high-T C superconducting copper-oxides. Elsevier, Amsterdam (1994)

    Google Scholar 

  15. Balestrino, G., Lavanga, S., Medaglia, P. G., Orgiani, P., Paoletti, A., Pasquini, G., Tebano, A., Tucciarone, A.: Appl. Phys. Lett. 79, 99 (2001)

    Article  ADS  Google Scholar 

  16. Abrikosov, A.A.: Fundamentals of the theory of metals. North-Holland, Amsterdam (1988)

    Google Scholar 

  17. Maritato, L., Galdi, A., Orgiani, P., Harter, J.W., Schubert, J., Shen, K.M., Schlom, D.G: J. Appl. Phys 113, 053911 (2013)

    Article  ADS  Google Scholar 

  18. Harter, J.W., Maritato, L., Shai, D.E., Monkman, E.J., Nie, Y., Schlom, D.G., Shen, K.M.: Phys. Rev. Lett. 109, 267001 (2012)

    Article  ADS  Google Scholar 

  19. Van der Pauw, L. J.: Philips Res. Rep. 13, 1 (1958)

    Google Scholar 

  20. Lee, P.A., Ramakrishnan, T.V.: Rev. Mod. Phys. 57, 287 (1985)

    Article  ADS  Google Scholar 

  21. Maritato, L., Adamo, C., Barone, C., De Luca, G.M., Galdi, A., Orgiani, P., Petrov, A.Yu.: Phys. Rev. B 73, 094456 (2006)

    Article  ADS  Google Scholar 

  22. Kumar, D., Sankar, J., Narayan, J., Singh, R.K., Majumdar, A.K.: Phys. Rev. B 65, 094407 (2002)

    Article  ADS  Google Scholar 

  23. Coey, J.M.D., Viret, M., Ranno, L., Ounadjela, K.: Phys. Rev. Lett. 75, 3910 (1995)

    Article  ADS  Google Scholar 

  24. Barone, C., Guarino, A., Nigro, A., Romano, A., Pagano, S.: Phys. Rev. B 80, 224405 (2009)

    Article  ADS  Google Scholar 

  25. Barone, C., Romeo, F., Galdi, A., Orgiani, P., Maritato, L., Guarino, A., Nigro, A., Pagano, S.: Phys. Rev. B 87, 245113 (2013)

    Article  ADS  Google Scholar 

  26. Barone, C., Galdi, A., Pagano, S., Quaranta, O., Méchin, L., Routoure, J.-M., Perna, P.: Rev. Sci. Instrum. 78, 093905 (2007)

    Article  ADS  Google Scholar 

  27. Barone, C., Romeo, F., Pagano, S., Attanasio, C., Carapella, G., Cirillo, C., Galdi, A., Grimaldi, G., Guarino, A., Leo, A., Nigro, A., Sabatino, P.: Sci. Rep. 5, 10705 (2015)

    Article  ADS  Google Scholar 

  28. Kogan, S.: Electronic noise and fluctuations in solids. Cambridge University Press, Cambridge (1996)

    Book  Google Scholar 

  29. Mercone, S., et al.: Phys. Rev. B 71, 064415 (2005)

    Article  ADS  Google Scholar 

  30. Orgiani, P., Adamo, C., Barone, C., Galdi, A., Petrov, A.Yu., Schlom, D.G., Maritato, L.: Phys. Rev. B 76, 012404 (2007)

    Article  ADS  Google Scholar 

  31. Kittel, C.: Introduction to solid state physics. Wiley, New York (1996)

    Google Scholar 

  32. Mott, N.F.: Metal-insulator transition. Taylor & Francis, London (1990)

    Google Scholar 

Download references

Acknowledgments

P.O. research activity has been supported by “Regione Campania” L.R. n.5 within the project “Superconduttività in Nano-sistemi: effetti quantistici macroscopici in dispositivi superconduttivi nanostrutturati.” L.M. and D.G.S. gratefully acknowledge the support from ARO Grant No. W911NF-09-1-0415. This work was partially supported by Italian MIUR Grant No. PRIN 20094W2LAY and No. FIRB RBAP115AYN. This work made use of the Cornell Center for Materials Research Shared Facilities which are supported through the NSF MRSEC program (DMR-1120296).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Orgiani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Orgiani, P., Galdi, A., Sacco, C. et al. The Role of Quantum Interference Effects in Normal-State Transport Properties of Electron-Doped Cuprates. J Supercond Nov Magn 28, 3481–3486 (2015). https://doi.org/10.1007/s10948-015-3209-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-015-3209-0

Keywords

Navigation