Skip to main content
Log in

Hexagonal-Type Ising Nanowire with Core/Shell Structure Designed with Half-Integer Spins: Compensation Behaviors and Phase Diagrams in the Temperature and Interaction Planes

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

The effective field theory with correlation is used to investigate the magnetic behaviors of the mixed spin-1/2 and spin-3/2 hexagonal Ising nanowire (HIN) with core/shell in the crystal field. The total magnetization as a function of the temperature is used to describe the compensation behaviors of the system, and the N-, Q-, P-, R-, and S-type compensation types are given. The dependence of the phase diagrams on interaction parameters is studied in detail and presented the phase diagrams in the six different planes, namely (J 1, Δ, T), (J C, Δ, T), (J S, Δ, T), (J 1, J C, T), (J 1, J S, T) and (J C, J S, T).Besides, the system exhibit second-order phase transition and first-order phase transitions, which can be found via the variations of the total magnetization with the crystal field in the mixed spin-1/2 and spin-3/2 HIN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Cui, Y., Wei, Q.Q., Park, H.K., Lieber, C.M.: Science 293, 1289 (2001)

    Article  ADS  Google Scholar 

  2. Wan, Q., Wang, T.H.: Appl. Phys. Lett. 3085, 84 (2004)

    Google Scholar 

  3. Maqableh, M.M., Huang, X.B., Sung, S.Y., Reddy, K.M., Victora, G.R.H., Stadler, B.J.H.: Nano Lett. 12, 4102 (2012)

    Article  ADS  Google Scholar 

  4. Hein, M.A, Maqableh, M.M., Delahunt, M.J., Tondra, M., Flatau, A.B., Shield, C.K., Stadler, B.J.H.: IEEE Trans. Magn. 49, 191 (2013)

    Article  ADS  Google Scholar 

  5. Strečka, J., Jascur, M.: Phys. Rev. B, 70 (2004)

  6. Ekiz, C., Erdem, R.: Phys. Lett. A 352, 291–295 (2006)

    Article  ADS  MATH  Google Scholar 

  7. Wu, H.N., Wei, G.Z., Yi, G.Y.: Phys. Lett. A 372, 6531–6535 (2008)

    Article  ADS  MATH  Google Scholar 

  8. Ekiz, C., Strečka, J., Jascur, M.: Cent. Eur. J. Phys. 7, 509–520 (2009)

    Google Scholar 

  9. Zaim, A., Kerouad, M., Belmamoun, Y.: Physica B 404, 2280–2284 (2009)

    Article  ADS  Google Scholar 

  10. Boughrara, M., Kerouad, M., Zaim, A., Magn, J.: Magn. Mater. 360, 222–228 (2014)

    Article  ADS  Google Scholar 

  11. Ghliyem, M., Benayad, N., Azhari, M.: Physica A 402, 14–29 (2014)

    Article  MathSciNet  ADS  Google Scholar 

  12. Kantar, E., Kocakaplan, Y.: Solid State Commun. 177, 1–6 (2014)

    Article  ADS  Google Scholar 

  13. Kocakaplan, Y., Kantar, E.: Eur. Phys. J. B 87, 135 (2014)

    Article  ADS  Google Scholar 

  14. Kocakaplan, Y., Kantar, E.: Chin. Phys. B 23, 046801 (2014)

  15. Jiang, W., Wei, G.-Z., Xin, Z.-H.: Physica A 293, 455 (2001)

  16. Li, J., Wei, G., Du, A.: J. Magn. Magn. Mater. 269, 410 (2004)

    Article  ADS  Google Scholar 

  17. Ekiz, C.: J. Magn. Magn. Mater. 293, 913 (2005)

    Article  ADS  Google Scholar 

  18. Jascur, M., Strecka, J.: Physica A 358, 393 (2005)

    Article  ADS  Google Scholar 

  19. Liang, Y.Q., Wei, G.Z., Song, G.L.: Phys. Status Solidi B 245, 2586 (2008)

    Article  ADS  Google Scholar 

  20. Deviren, B., Keskin, M., Canko, O.: J. Magn. Magn. Mater 321, 458 (2009)

    Article  ADS  Google Scholar 

  21. Keskin, M., Deviren, B., Canko, O.: IEEE T Magn. 45, 2640 (2009)

    Article  ADS  Google Scholar 

  22. Kantar, E., Deviren, B., Keskin, M.: Eur. Phys. J. B 86, 253 (2013)

    Article  ADS  Google Scholar 

  23. Yigit, A., Albayrak, E.: Physica A 392, 4216 (2013)

    Article  MathSciNet  ADS  Google Scholar 

  24. Taskin, F., Canko, O., Erdinc, A., Yildirim, A.F.: Physica A 407, 287 (2014)

    Article  MathSciNet  ADS  Google Scholar 

  25. Manriquez, J.M., Yee, G.T., McLean, R.S., Epstein, A.J., Miller, J.S.: Science 252, 1415 (1991)

    Article  ADS  Google Scholar 

  26. Morin, B.G., Zhou, P., Hahm, C., Epstein, J.A.: J. Appl. Phys. 73, 5648 (1991)

    Article  ADS  Google Scholar 

  27. Du, G., Joo, J., Epstein, A.: J. Appl. Phys. 73, 6566 (1993)

    Article  ADS  Google Scholar 

  28. Leite, V.S., Figueiredo, W.: Physica A 350, 379 (2005)

    Article  ADS  Google Scholar 

  29. Bakuzis, A.F., Morais, P.C.: J. Magn. Magn. Mater. 285, 145 (2005)

    Article  ADS  Google Scholar 

  30. Kaneyoshi, T.: Phys. Status Solidi (b) 242, 2938 (2005)

    Article  ADS  Google Scholar 

  31. Kaneyoshi, T.: J. Magn. Magn. Mater. 321, 3430 (2009)

    Article  ADS  Google Scholar 

  32. Saber, M., Lukyanchuk, I., Madani, M., Tabyaoui, A., Ainane, A.: Chin. J. Phys. 45, 58 (2007)

    Google Scholar 

  33. Apostolova, I., Wesselinowa, J.M: Solid State Commun. 147, 74 (2008)

    Article  ADS  Google Scholar 

  34. Vasilakaki, M., Trohidou, K.N.: Phys. Rev. B 79, 144402 (2009)

    Article  ADS  Google Scholar 

  35. Kantar, E., Keskin, M.: J. Magn. Magn. Mater. 349, 165 (2014)

    Article  ADS  Google Scholar 

  36. Salazar-Alvarez, G., et al.: J. Mater. Chem. 17(322), 341 (2007)

    Google Scholar 

  37. Xi, L., Wang, Z., Zuo, Y., Shi, X.: Nanotechnology 22(045707), 342 (2011)

    Google Scholar 

  38. Lee, J.-H., et al.: Nat. Nanotechnol 6(418), 343 (2011)

    ADS  Google Scholar 

  39. Chaubey, G.S., et al.: Chem. Mater. 20, 475 (2008)

    Article  Google Scholar 

  40. Su, H.L., Ji, G.B., Tang, S.L., Li, Z., Gu, B.X., Du, Y.W.: Nanotechnology 16, 429 (2005)

    Article  ADS  Google Scholar 

  41. Chen, J.Y., Liu, H.R., Ahmad, N., Li, Y.L., Chen, Z.Y., Zhou, W.P., Han, X.F.: J. Appl. Phys. 109(7), 07E157 (2011)

    Google Scholar 

  42. Pan, H., Liu, B.H., Yi, J.B., Poh, C., Lim, S., Ding, J., Feng, Y.P., Huan, C., Lin, J.Y.: J. Phys. Chem. B 109, 3094 (2005)

    Article  Google Scholar 

  43. Seong, K-H., kim, J.-Y., Kim, J.-J., Lee, S.-C., Kim, S.-R., Kim, U., Park, T.-E., Choi, H.-J.: Nano Lett. 7, 3366 (2007)

    Article  ADS  Google Scholar 

  44. Hamrakulov, B., Kim, I.S., Lee, M.G., et al.: Trans. Nonferrous Metals Soc. China 19, 83 (2009)

    Article  Google Scholar 

  45. Zhang, L., Zhang, Y.: J. Magn. Magn. Mater 321, L15 (2009)

    Article  ADS  Google Scholar 

  46. Ahmad, N., Chen, J.Y., Iqbal, J., Wang, W.X., Zhou, W.P., Han, X.F.: J. Appl. Phys. 109, 07A331 (2011)

    Google Scholar 

  47. Xu, J.P., Zhang, Z.Z., Ma, B., Jin, Q.Y.: J. Appl. Phys. 109(7), 07B704 (2011)

    Google Scholar 

  48. Rousse, C., Fricoteaux, P.: J. Mater. Sci. 46, 6046 (2011)

    Article  ADS  Google Scholar 

  49. Yang, Z.H., Li, Z.W., Liu, L., Kong, L.B.: J. Magn. Magn. Mater. 323, 2674 (2011)

    Article  ADS  Google Scholar 

  50. Benhouria, Y., Essaoudi, I., Ainane, A., Ahuja, R., Dujardin, F.: Superlattice. Microst. 73, 121 (2014)

    Article  ADS  Google Scholar 

  51. Magoussi, H., Zaim, A., Kerouad, M.: Solid State Commun. 200, 32 (2014)

    Article  ADS  Google Scholar 

  52. Feraoun, A., Zaim, A., Kerouad, M.: Physica B 445, 74 (2014)

    Article  ADS  Google Scholar 

  53. Boughrara, M., Kerouad, M., Zaim, A.: J. Magn. Magn. Mater. 360, 222 (2014)

    Article  ADS  Google Scholar 

  54. Kaneyoshi, T.: J. Magn. Magn. Mater. 322, 3410–3415 (2010)

    Article  ADS  Google Scholar 

  55. Kaneyoshi, T.: J. Magn. Magn. Mater. 322, 3014–3018 (2010)

    Article  ADS  Google Scholar 

  56. Kaneyoshi, T.: Phys. Status Solidi B 248, 250–258 (2011)

    Article  ADS  Google Scholar 

  57. Deviren, B., Kantar, E., Keskin, M.: J. Magn. Magn. Mater. 324, 2163–2170 (2012)

    Article  ADS  Google Scholar 

  58. Sarli, N., Keskin, M.: Solid State Commun. 152, 354–359 (2012)

    Article  ADS  Google Scholar 

  59. Kaneyoshi, T.: Physica A 392, 2406–2414 (2013)

    Article  ADS  Google Scholar 

  60. Zaim, A., Kerouad, M., Boughrara, M.: J. Magn. Magn. Mater. 331, 37–44 (2013)

    Article  ADS  Google Scholar 

  61. Kantar, E., Ertaş, M., Keskin, M.: J. Magn. Magn. Mater. 361, 61–67 (2014)

    Article  ADS  Google Scholar 

  62. Kantar, E., Ertaş, M.: Superlattice. Microst. 75, 831 (2014)

    Article  ADS  Google Scholar 

  63. Ertaş, M., Kantar, E.: Phase Transitions, doi:10.1080/01411594.2014.1002783

  64. Néel, L.: Ann. Phys. 3, 137 (1948)

    Google Scholar 

  65. Chikazumi, S.: Oxford University Press, Oxford (1997)

  66. Strecka, J.: Physica A 360, 379 (2006)

    Article  ADS  Google Scholar 

  67. Chern, G., Horng, L., Shieih W.K., Wu, T.C.: Phys. Rev. B 63, 094421 (2001)

    Article  ADS  Google Scholar 

  68. Kageyama, H., Khomskii, D.I., Levitin, R.Z., Vasilev, A.N.: Phys. Rev. B 67, 224422 (2003)

    Article  ADS  Google Scholar 

  69. Multigner, M., Lakamp, S., Pounoy, G., Hernando, A., Valenzuela, R.: Appl. Phys. Lett. 696, 2761 (1996)

    Article  ADS  Google Scholar 

  70. Buendia, G.M., Machado, E.: Phys. Rev. B 61, 14686 (2000)

    Article  ADS  Google Scholar 

  71. Ohkoshi, S., Yukinori, A., Akira, F., Hashimoto, K.: Phys. Rev. Lett. 82, 1285 (1999)

    Article  ADS  Google Scholar 

  72. Mansuripur, M.: J. Appl. Phys. 61, 1580 (1987)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ersin Kantar.

Appendix A: The coefficients A, B, C, and D are defined as follows

Appendix A: The coefficients A, B, C, and D are defined as follows

$$\begin{array}{@{}rcl@{}} \mathrm{A}(\mathrm{a})&=&\frac{1}{8} \left[ 9 \cosh\left( \frac{\mathrm{J}_{\mathrm{C}} {\nabla}}{2} \right)-\cosh\left( \frac{3\mathrm{J}_{\mathrm{C}}{\nabla}}{2} \right) \right] , \qquad\qquad \mathrm{A}(\mathrm{b})=\frac{1}{8} \left[ 9 \cosh \left( \frac{\mathrm{J}_{1} \nabla }{2} \right) - \cosh \left( \frac{3\mathrm{J}_{1} \nabla }{2} \right) \right] , \\ \mathrm{B}(\mathrm{a})&=&\frac{1}{12} \left[ 27 \sinh\left( \frac{\mathrm{J}_{\mathrm{C}}{\nabla}}{2} \right)-\sinh\left( \frac{3 J_{\mathrm{C}}{\nabla}}{2} \right) \right] ,\qquad\quad\mathrm{~B}(\mathrm{b})=\frac{1}{12}\,\left[ 27\,\sinh \left( \frac{\mathrm{J}_{1} \nabla }{2} \right) - \sinh \left( \frac{3\mathrm{J}_{1} \nabla }{2} \right) \right] , \\ \mathrm{C}(\mathrm{a}) &=& \frac{1}{2} \left[ -\cosh\left( \frac{\mathrm{J}_{\mathrm{C}}{\nabla}}{2} \right)+ \cosh\left( \frac{3 \mathrm{J}_{\mathrm{C}}{\nabla}}{2} \right) \right] , \qquad\quad~~~ \mathrm{C}(\mathrm{b})=\frac{1}{2} \left[ -\cosh \left( \frac{\mathrm{J}_{1} \nabla }{2} \right)+ \cosh \left( \frac{3\mathrm{J}_{1} \nabla }{2} \right) \right] , \\ \mathrm{B}(\mathrm{a})&=&\frac{1}{3} \left[ - 3\sinh\left( \frac{\mathrm{J}_{\mathrm{C}}{\nabla}}{2} \right) + \sinh\left( \frac{3 \mathrm{J}_{\mathrm{C}}{\nabla}}{2} \right) \right] , \qquad\quad~~ \mathrm{D}(\mathrm{b})=\frac{1}{3}\,\left[ {\,-3\sinh \left( {\frac{\mathrm{J}_{1} \nabla }{2}} \right)+\,\sinh \left( {\frac{3\mathrm{J}_{1} \nabla }{2}} \right)} \right], \\ \end{array} $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kantar, E. Hexagonal-Type Ising Nanowire with Core/Shell Structure Designed with Half-Integer Spins: Compensation Behaviors and Phase Diagrams in the Temperature and Interaction Planes. J Supercond Nov Magn 28, 2865–2873 (2015). https://doi.org/10.1007/s10948-015-3084-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-015-3084-8

Keywords

Navigation