Skip to main content
Log in

Electrical Properties of Mn-Doped Ni x Zn0.9−x Fe2O4 Particles

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

High-purity Mn-doped Ni x Zn0.9−x Fe2 O 4 particles were fabricated by conventional ceramic processing. The ac conductivity reveals a temperature-dependent behavior at low frequencies and temperature-independent behavior at high frequencies which could be an indication of ionic conductivity because of activated frequency ranges. The dc conductivities of Mn-substituted Ni-Zn spinel ferrites [Ni x Zn0.9−x Mn0.1:Fe2 O 4 (where 0.3 ≤x≤ 0.7)] are found to obey the Arrhenius plot with activation energies between 016 and 0.18 eV. The electrical characterization confirms that ac conductivity is found to be almost independent of frequency at lower frequencies up to 10 kHz and however increases with temperature elevation. Additionally, the imaginary component of dielectric function obeys the power law of frequency while it possesses temperature dependency as well. This can be attributed to the molecular interatomic interactions among Mn-substituted Ni-Zn spinel ferrites. Functional analysis of the electrical conductivities and dielectric permittivity suggests that ionic motions are strongly coupled within the spinel ferrite nanocomposites because of the stimulated frequency ranges

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Deligöz, H., et al.: Synthesis, structural, magnetic and electrical properties of Co1 - xZnxFe2O4 (x = 0.0, 0.2) nanoparticles. Mater. Res. Bull. 48(2), 646–654 (2013)

    Article  Google Scholar 

  2. Köseoğlu, Y.: Structural, magnetic, electrical and dielectric properties of MnxNi1 - xFe2O4 spinel nanoferrites prepared by PEG assisted hydrothermal method. Ceram. Int. 39(4), 4221–4230 (2013)

    Article  Google Scholar 

  3. Anwar, H., Maqsood, A.: Structural, magnetic and electrical properties of Cu substituted Mn–Zn soft nanoferrites. J. Supercond. Nov. Magn. 25(6), 1913–1920 (2012)

    Article  Google Scholar 

  4. Gabal, M.A., et al.: Influence of Al-substitution on structural, electrical and magnetic properties of Mn–Zn ferrites nanopowders prepared via the sol–gel auto-combustion method. Polyhedron 57, 105–111 (2013)

    Article  Google Scholar 

  5. Genç, F., Turhan, E., Kavas, H., Topal, U., Baykal, A., Sözeri, H.: Submitted to J. of Superconductivity and Novel Magnetisim as a proceeding of ICSM 2014 “International Conference on Superconductivity and Magnetism” in Antalya, Turkey

  6. Wejrzanowski, T., et al.: Quantitative methods for nanopowders characterization. Appl. Surf. Sci. 253(1 SPEC. ISS.), 204–208 (2006)

    Article  ADS  Google Scholar 

  7. Sertkol, M., et al.: Synthesis and magnetic characterization of Zn0.6Ni0.4Fe2O4 nanoparticles via a polyethylene glycol-assisted hydrothermal route. J. Magn. Magn. Mater. 321(3), 157–162 (2009)

    Article  ADS  Google Scholar 

  8. Kavas, H., et al.: Cation distribution and magnetic properties of Zn doped NiFe2O4 nanoparticles synthesized by PEG-assisted hydrothermal route. J. Alloys Compd. 479(1–2), 49–55 (2009)

    Article  Google Scholar 

  9. Sertkol, M., et al.: Microwave synthesis and characterization of Zn-doped nickel ferrite nanoparticles. J. Alloys Compd. 486(1–2), 325–329 (2009)

    Article  Google Scholar 

  10. Kumar, A., et al.: Finite size effect on Ni doped nanocrystalline NixZn1-xFe2O4 (0.1 =x= 0.5). Thin Solid Films 519(3), 1056–1058 (2010)

    Article  ADS  Google Scholar 

  11. Shen, Y.F., et al.: Manganese oxide octahedral molecular sieves: preparation, characterization, and applications. Science 260(5107), 511–515 (1993)

    Article  ADS  Google Scholar 

  12. Unal, B., et al.: Synthesis, conductivity and dielectric characterization of salicylic acid–Fe3O4 nanocomposite. Mater. Chem. Phys. 123(1), 184–190 (2010)

    Article  MathSciNet  Google Scholar 

  13. Macdonald, J.R.: Comparison of the universal dynamic response power-law fitting model for conducting systems with superior alternative models. Solid State Ionics 133(1–2), 79–97 (2000)

    Article  Google Scholar 

  14. Zhang, C.S., Yang, L.: Preparation and magnetic properties of the conductive Co(1 - x)NixFe2O4/polyaniline microsphere composites. J. Magn. Magn. Mater. 324(8), 1469–1472 (2012)

    Article  ADS  Google Scholar 

  15. Kurtan, U., et al.: The electrical properties of polyaniline (PANI)–Co0.5Mn0.5Fe2O4 nanocomposite. J. Inorg. Organomet. Polym. Mater. 23(5), 1089–1096 (2013)

    Article  Google Scholar 

  16. Zhong-ai, H., et al.: The preparation and characterization of quadrate NiFe2O4/polyaniline nanocomposites. J. Mater. Sci: Mater. Electron. 17(11), 859–863 (2006)

    Google Scholar 

Download references

Acknowledgments

This work is supported by TUBITAK (The Scientific and Technological Research Council of Turkey) with Project number 213M174.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Sözeri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Genc, F., Ünal, B., Baykal, A. et al. Electrical Properties of Mn-Doped Ni x Zn0.9−x Fe2O4 Particles. J Supercond Nov Magn 28, 1055–1064 (2015). https://doi.org/10.1007/s10948-014-2833-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-014-2833-4

Keywords

Navigation