Skip to main content
Log in

Room Temperature Magnetism in Cobalt-Doped ZnS Nanoparticles

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Cobalt (0, 1, 5, and 10 %)-doped ZnS nanoparticles have been synthesized via low-temperature solvothermal technique. The resultant nanoparticles have been analyzed using transmission electron microscope (TEM), electron dispersive spectroscope (EDS), X-ray diffraction (XRD), and UV-visible (UV-Vis.) and photoluminescence (PL) spectrophotometer. Magnetic studies have been carried out using a vibrating sample magnetometer (VSM). The average size of nanoparticles has been found to be ∼9 nm. The XRD spectra indicated cubic phase of the undoped and Co-doped ZnS nanoparticles. The band gap of doped nanoparticles, 4.80 eV, has been found to be blueshifted as compared to its undoped counterpart, 4.59 eV. Room-temperature emission spectra exhibited blue and green lines. Magnetic studies indicated diamagnetic and ferromagnetic character at lower Co concentrations, 0 and 1 %, and ferromagnetic and paramagnetic character at higher Co concentrations, 5 and 10 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wolf, S.A., Awschalom, D.D., Buhrman, R.A., Daughton, J.M., von Molnar, S., Roukes, M.L., Chtchelkanova, A.Y., Treger, D.M.: Spintronics: a spin-based electronics vision for the future. Science 294, 1488 (2001)

    Article  ADS  Google Scholar 

  2. Furdyna, J.K.: Dilute magnetic semiconductors. J. Appl. Phys. 64, R29 (1988)

    Article  ADS  Google Scholar 

  3. Steigerwald, M.L., Brus, L.E.: Semiconductor crystallites: a class of large molecules. Acc. Chem. Res. 23, 183–186 (1990)

    Article  Google Scholar 

  4. Kim, D., Min, K.D., Lee, J., Park, J.H., Chun, J.H.: Influences of surface capping on particle size and optical characteristics of ZnS:Cu nanocrystals. Mater. Sci. Eng. B 131, 13 (2006)

    Article  Google Scholar 

  5. Wang, Y., Herron, N.: Nanometer-sized semiconductor clusters: materials synthesis, quantum size effects, and photophysical properties. J. Phys. Chem. 95, 525 (1991)

    Article  Google Scholar 

  6. Colvin, V.L., Schlamp, M.C., Alivisatos, A.P.: Light-emitting-diodes made from cadmium selenide nanocrystals and a semiconducting polymer. Nature 370, 354 (1994)

    Article  ADS  Google Scholar 

  7. Bharagava, R.N.: Doped nanocrystalline materials—physics and applications. J. Lumin. 70, 85–94 (1996)

    Article  Google Scholar 

  8. Bhargava, R., Gallagher, D., Welker, T.: Doped nanocrystals of semiconductors—a new class of luminescent materials. J. Lumin. 60, 275–80 (1994)

    Article  Google Scholar 

  9. Jindal, Z., Verma, N.K.: Enhanced luminescence of UV irradiated Zn1−xNixS nanoparticles. Mater. Chem. Phys. 124, 270–273 (2010)

    Article  Google Scholar 

  10. Jindal, Z., Verma, N.K.: Photoluminescent properties of ZnS:Mn nanoparticles with in-built surfactant. J. Mater. Sci. 43, 6539–6545 (2008)

    Article  ADS  Google Scholar 

  11. Lotey, G.S., Jindal, Z., Singhi, V., Verma, N.K.: Structural and photoluminescence properties of Eu-doped ZnS nanoparticles. Mater. Sci. Semicond. Process. 16, 2044–2050 (2013)

    Article  Google Scholar 

  12. Li, Y., Cao, C., Chen, Z.: Magnetic and optical properties of Fe-doped ZnS nanoparticles synthesized by microemulsion method. Chem. Phys. Lett. 517, 55–58 (2011)

    Article  ADS  Google Scholar 

  13. Kumar, S., Verma, N.K.: Ferromagnetic and weak superparamagnetic like behavior of Ni-doped ZnS nanocrystals synthesized by reflux method. J. Mater. Sci: Mater. Electron. 25, 1132–1137 (2014)

    Google Scholar 

  14. Kumar, S., Chen, C.L., Dong, C.L., Ho, Y.K., Lee, J.F., Chan, T.S., Thangavel, R., Chen, T.K., Mok, B.H., Rao, S.M., Wu, M.K.: Room temperature ferromagnetism in Ni-doped ZnS nanoparticles. J. Alloy Compd. 554, 357–362 (2013)

    Article  Google Scholar 

  15. Lu, M. Y., Chen, L. J., Mai, W., Wang, Z. L.: Tunable electric and magnetic properties of Co x Zn1−x S nanowires. Appl. Phys. Lett. 93, 242503 (2008)

    Article  ADS  Google Scholar 

  16. Sambasivam, S., Joseph, D.P., Lin, J.G., Venkateswaran, C.: Doping induced magnetism in Co-ZnS nanoparticles. J. Solid State Chem. 182, 2598–2601 (2009)

    Article  ADS  Google Scholar 

  17. Patel, S.P., Pivin, J.C., Chawla, A.K., Chandra, R., Kanjilal, D., Kumar, L.: Room temperature ferromagnetism in Zn1−xCoxS thin films with wurtzite structure. J. Magn. Magn. Mater. 323, 2734–2740 (2011)

    Article  ADS  Google Scholar 

  18. Biswas, S., Kar, S.: Fabrication of ZnS nanoparticles and nanorods with cubic and hexagonal crystal structures: a simple solvothermal approach. Nanotechnology 19, 045710 (2008)

    Article  ADS  Google Scholar 

  19. Patterson, A.L.: The Scherrer formula for X-ray particle size determination. Phys. Rev. Lett. 56, 978–982 (1939)

    ADS  MATH  Google Scholar 

  20. Zhang, L., Qin, D., Yang, G., Zhang, Q.: The investigation on synthesis and optical properties of ZnS:Co nanocrystals by using hydrothermal method. Chalcogenide. Lett. 9, 93–98 (2012)

    MATH  Google Scholar 

  21. Lee, S., Song, D., Kim, D., Lee, J., Kim, S., Park, I.Y., Choi, Y.D.: Effects of synthesis temperature on particle size/shape and photoluminescence characteristics of ZnS:Cu nanocrystals. Mater. Lett/ 58, 342–346 (2004)

    Article  Google Scholar 

  22. Chen, H., Hu, Y., Zeng, X.: Green photoluminescence mechanism in ZnS nanostructures. J. Mater. Sci. 46, 2715–2719 (2011)

    Article  ADS  Google Scholar 

  23. Iqbal, M.J., Iqbal, S.: Synthesis of stable and highly luminescent beryllium and magnesium doped ZnS quantum dots suitable for design of photonic and sensor material. J. Lumin. 134, 739–746 (2013)

    Article  MathSciNet  Google Scholar 

  24. Kumar, S., Verma, N.K.: Effect of Ni-doping on optical and magnetic properties of solvothermally synthesized ZnS wurtzite nanorods. J. Mater. Sci: Mater. Electron. 25, 785–790 (2014)

    Google Scholar 

  25. Shafique, M. A., Shah, S. A., Nafees, M., Rasheed, K., Ahmad, R.: Effect of doping concentration on absorbance, structural, and magnetic properties of cobalt-doped ZnO nano-crystallites. Int. Nano Lett. 2, 31 (2012)

    Article  Google Scholar 

  26. Gandhi, V., Ganesan, R., Syedahamed, H.H.A., Thaiyan, M.: Effect of cobalt doping on structural, optical, and magnetic properties of ZnO nanoparticles synthesized by coprecipitation method. J. Phys. Chem. C 118, 9715–9725 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunil Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Verma, N.K. Room Temperature Magnetism in Cobalt-Doped ZnS Nanoparticles. J Supercond Nov Magn 28, 137–142 (2015). https://doi.org/10.1007/s10948-014-2823-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-014-2823-6

Keywords

Navigation