Skip to main content
Log in

Tests of SNIS Josephson Arrays Cryocooler Operation

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Cryogen-free operation of is essential to spread applications of superconductivity and is indeed unavoidable in some cases. In electrical metrology applications, higher temperature operation to reduce the refrigerator size and complexity is not yet possible, since arrays of Josephson junctions for voltage standard applications made with high-temperature superconductors are not yet available. The superconductor-normal metal-insulator-superconductor (SNIS) technology developed at INRIM uses low temperature superconductors, but allows operation well above liquid helium temperature. It is thus interesting for application to a compact cryocooled standard. We studied SNIS devices cooled with a closed-cycle refrigerator, both in DC and under RF irradiation. Issues related to thermal design of the apparatus are analyzed. The dependence of RF steps on the number of junctions observed is discussed in detail and interpreted as a consequence of power dissipated inside the chip.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Febvre, P., Bouis, D., De Leo, N., Fretto, M., Sosso, A., Lacquaniti, V.: Electrical parameters of niobium-based overdamped superconductor-normal metal-insulator-superconductor Josephson junctions for digital applications. J. Appl. Phys. 107(10), 103,927–103,927 (2010)

    Article  Google Scholar 

  2. Ghigo, G., Gerbaldo, R., Gozzelino, L., Laviano, F., Lopardo, G., Monticone, E., Portesi, C., Mezzetti, E.: Local thermal bistability in MgB2 microwave coplanar resonators: Opposite jumpwise response to weak-link switching and to vortex avalanches. Appl. Phys. Letter. 94(5), 052,505 (2009)

    Article  Google Scholar 

  3. Howe, L., Burroughs, C., Dresselhaus, P., Benz, S., Schwall, R.: Cryogen-free operation of 10 v programmable Josephson voltage standards. Appl Supercond, IEEE Trans. 23(3), 1300, 605–1300,605 (2013). doi:10.1109/TASC.2012.2230052

    Article  Google Scholar 

  4. Jeanneret, B., Benz, S.: Application of the Josephson effect in electrical metrology. Eur. Phys. J. Spec. Top. 172(1), 181–206 (2009)

    Article  Google Scholar 

  5. Kim, J., Sosso, A., Clark, A.: Dynamics of overdamped Josephson junctions driven by a square-wave pulse. J. Appl. Phys. 83(6), 3225–3232 (1998)

    Article  ADS  Google Scholar 

  6. Lacquaniti, V., Andreone, D., De Leo, N., Fretto, M., Sosso, A., Belogolovskii, M.: Engineering overdamped niobium-based Josephson junctions for operation above 4.2 K. IEEE Trans. Appl. Supercond. 19(3), 234–237 (2009)

    Article  ADS  Google Scholar 

  7. Lacquaniti, V., Belogolovskii, M., Cassiago, C., De Leo, N., Fretto, M., Sosso, A.: Universality of transport properties of ultrathin oxide films. New J. Phys. 14, 023,025 (2012)

    Article  Google Scholar 

  8. Lacquaniti, V., De Leo, N., Fretto, M., Maggi, S., Sosso, A.: Nb/Al-AlO x /Nb Overdamped Josephson junctions above 4.2 K for voltage metrology. Appl. Phys. Lett. 91(25), 252,505 (2007). doi:10.1063/1.2825469 URL http://link.aip.org/link/?APPLAB/91/252505/1

    Article  Google Scholar 

  9. Lacquaniti, V., De Leo, N., Fretto, M., Sosso, A., Belogolovskii, M.: Nb/al–alo x–nb superconducting heterostructures: a promising class of self-shunted Josephson junctions. J. Appl. Phys. 108(9), 093,701–093,701 (2010)

    Article  Google Scholar 

  10. Lacquaniti, V., De Leo, N., Fretto, M., Sosso, A., Müller, F., Kohlmann, J.: 1 V programmable voltage standards based on SNIS Josephson junction series arrays. Supercond. Sci. Technol. 24(4), 045, 004 (2011)

    Article  Google Scholar 

  11. Levinsen, M., Chiao, R., Feldman, M., Tucker, B.: An inverse AC Josephson effect voltage standard. Appl. Phys. Lett. 31, 776 (1977)

    Article  ADS  Google Scholar 

  12. Müller, F., Scheller, T.J., Lee, J., Behr, R., Palafox, L., Schubert, M., Kohlmann, J.: Microwave design and performance of ptb 10 v circuits for the programmable josephson voltage standard. World J. Condens. Matter Phys. 4(03), 107 (2014)

    Article  ADS  Google Scholar 

  13. Sosso, A., De Leo, N., Fretto, M., Monticone, E., Roncaglione, L., Rocci, R., Lacquaniti, V.: Cryocooler operation of snis josephson arrays for ac voltage standards. J. Phys. Conf. Ser. 507(042), 040 (2014)

    Google Scholar 

  14. Sosso, A., Lacquaniti, V., Andreone, D., Cerri, R., Klushin, A.: Study and operating conditions of HTS Josephson arrays for metrological application. Phys. C. Supercond. 435(1–2), 125–127 (2006)

    Article  ADS  Google Scholar 

  15. Yamamori, H., Yamada, T., Sasaki, H., Kohjiro, S.: NbN-based overdamped josephson junctions for quantum voltage standards. IEICE Trans. Electron. 95(3), 329–336 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the contribution of L. Martino in manufacturing the shields for the cryogenic apparatus. This work was partially supported by EMRP, a research program jointly funded by the EMRP participating countries within EURAMET and the European Union.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Sosso.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sosso, A., Fretto, M., Lacquaniti, V. et al. Tests of SNIS Josephson Arrays Cryocooler Operation. J Supercond Nov Magn 28, 1181–1184 (2015). https://doi.org/10.1007/s10948-014-2779-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-014-2779-6

Keywords

Navigation