Skip to main content
Log in

Superconducting Proximity Effect in Crystalline Co and Cu Nanowires

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Superconducting proximity effect is investigated by electrical resistance measurements in individual single-crystal Cu and polycrystalline Co nanowires in contact with a W-based floating inducer electrode (T c = 5.2 K). Our analysis of the resistance drops shows that in both nanowires, (i)the superconducting proximity length ξ is of the order of 1 μm at 2.4 K and (ii) its temperature dependencies can be fitted well to an expression of the form \(\xi (T) \propto \sqrt {1/T}\) in a wide temperature range, in good agreement with the theoretical predictions for ξ(T) in the diffusive limit. For the Co nanowire, dependencies of the spin-triplet ξ upon current and magnetic field are also reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. De Gennes, P.: Rev. Mod. Phys. 36(1), 225 (1964). doi:10.1103/RevModPhys.36.225 10.1103/RevModPhys.36.225

    Article  ADS  Google Scholar 

  2. Deutscher, G., de Gennes, P.G.: Proximity effects. NY, Dekker (1969)

    Google Scholar 

  3. Buzdin, A.: Rev. Mod. Phys. 77(3), 935 (2005). doi:10.1103/RevModPhys.77.935

    Article  ADS  Google Scholar 

  4. Chiang, Y.N., Shevchenko, O.G., Kolenov, R.N.: Low Temp. Phys. 33(4), 314 (2007). doi:10.1063/1.2720077

    Article  ADS  Google Scholar 

  5. Aumentado, J., Chandrasekhar, V.: Phys. Rev. B 64, 054505 (2001). doi:10.1103/PhysRevB.64.054505

    Article  ADS  Google Scholar 

  6. Bergeret, F., Volkov, A., Efetov, K.: Rev. Mod. Phys. 77(4), 1321 (2005). doi:10.1103/RevModPhys.77.1321

    Article  ADS  Google Scholar 

  7. Eschrig, M., Löfwander, T.: Nature Phys. 4(2), 138 (2008). doi:10.1038/nphys831

    Article  ADS  Google Scholar 

  8. Bergeret, F., Volkov, A., Efetov, K.: Phys. Rev. Lett. 86(18), 4096 (2001). doi:10.1103/PhysRevLett.86.4096

    Article  ADS  Google Scholar 

  9. Wang, J., Singh, M., Tian, M., Kumar, N., Liu, B., Shi, C., Jain, J.K., Samarth, N., Mallouk, T.E., Chan, M.H.W.: Nature Phys. 6(5), 389 (2010). doi:10.1038/nphys1621

    Article  ADS  Google Scholar 

  10. Eschrig, M.: Phys. Today 64(1), 43 (2011). doi:10.1063/1.3541944

    Article  ADS  Google Scholar 

  11. Keizer, R.S., Goennenwein, S.T.B., Klapwijk, T.M., Miao, G., Xiao, G., Gupta, A.: Nature 439(7078), 825 (2006). doi:10.1038/nature04499

    Article  ADS  Google Scholar 

  12. Robinson, J.W.A., Witt, J.D.S., Blamire, M.G.: Science 329(5987), 59 (2010). doi:10.1126/science.1189246

    Article  ADS  Google Scholar 

  13. Anwar, M.S., Czeschka, F., Hesselberth, M., Porcu, M.: J. Arts Phys. Rev. B 82, 100501 (2010). doi:10.1103/PhysRevB.82.100501

    Article  ADS  Google Scholar 

  14. Zdravkov, V.I., Kehrle, J., Obermeier, G., Lenk, D., Krug von Nidda, H.A., Muller, C., Kupriyanov, M.Y., Sidorenko, A.S., Horn, S., Tidecks, R., et al.: Phys. Rev. B 87, 14 (2013). doi:10.1103/PhysRevB.87.144507

    Article  Google Scholar 

  15. Khaire, T.S., Khasawneh, M.A., Pratt, W.P., Birge, N.O.: Phys. Rev. Lett. 104, 137002 (2010). doi:10.1103/PhysRevLett.104.137002

    Article  ADS  Google Scholar 

  16. Sprungmann, D., Westerholt, K., Zabel, H., Weides, M., Kohlstedt, H.: Phys. Rev. B 82, 060505 (2010). doi:10.1103/PhysRevB.82.060505

    Article  ADS  Google Scholar 

  17. Giroud, M., Courtois, H., Hasselbach, K., Mailly, D., Pannetier, B.: Phys. Rev. B 58(18), R11872 (1998). doi:10.1103/PhysRevB.58.R11872

    Article  ADS  Google Scholar 

  18. Sosnin, I., Cho, H., Petrashov, V., Volkov, A.: Phys. Rev. Lett 96, 15 (2006). doi:10.1103/PhysRevLett.96.157002

    Article  Google Scholar 

  19. Almog, B., Hacohen-Gourgy, S., Tsukernik, A., Deutscher, G.: Phys. Rev. B 80, 22 (2009). doi:10.1103/PhysRevB.80.220512

    Article  Google Scholar 

  20. Petrashov, V., Sosnin, I., Cox, I., Parsons, A., Troadec, C.: Phys. Rev. Lett. 83(16), 3281 (1999). doi:10.1103/PhysRevLett.83.3281

    Article  ADS  Google Scholar 

  21. Petrashov, V.T., Sosnin, I.A. , Cox, I., Parsons, A., Troadec, C.: J. Low Temp. Phys. 118 (5/6), 689 (2000). doi:10.1023/A:1004699613621

    Article  ADS  Google Scholar 

  22. Kompaniiets, M., Dobrovolskiy, O.V, Neetzel, C. , Porrati, F., Brötz, J., Ensinger, W., Huth, M. Appl. Phys. Lett. 104(5), 052603 (2014). doi:http://dx.doi.org/10.1063/1.4863980

    Article  ADS  Google Scholar 

  23. Neetzel, C., Münch, F., Schachtsiek, A., Ensinger, W.: Trans. Mat. Res. Soc. Japan 37, 213 (2012)

    Article  Google Scholar 

  24. Neetzel, C., Rauber, M., Ensinger, W.: Trans. Mat. Res. Soc. Japan 36, 301 (2011)

    Article  Google Scholar 

  25. Utke, I., Hoffmann, P., Melngailis, J.J.: Vac. Sci. Technol. B 26(4), 1197 (2008). doi:10.1116/1.2955728

    Article  Google Scholar 

  26. Fernández-Pacheco, A., De Teresa, J.M. , Córdoba, R., Ibarra, M.R.: Phys. Rev. B 79, 174204 (2009). doi:10.1103/PhysRevB.79.174204

    Article  ADS  Google Scholar 

  27. Sadki, E.S., Ooi, S., Hirata, K.: Appl. Phys. Lett 85(25), 6206 (2004). doi:10.1063/1.1842367

    Google Scholar 

  28. Powell, C.J., Jablonski, A.J.: Phys. Chem. Ref. Data 28, 19 (1999)

    Article  ADS  Google Scholar 

  29. Kittel, C.: Introduction to Solid State Physics. Wiley (2004)

  30. Buckel, W., Kleiner, R.: Superconductivity Physics Wiley-VCH (2004)

  31. Kompaniiets, M., Dobrovolskiy, O.V., Neetzel, C., Begun, E., Porrati, F., Ensinger, W., Huth, M.: To be published in J. Appl. Phys. 116(8), (2014)

Download references

Acknowledgements

The authors thank R. Sachser for support in automating the data acquisition and C. Trautmann and M. E. Toimil-Molares for providing ion-track etched polycarbonate templates. J. Brötz is thanked for doing XRD measurements. Discussions with K. Arutyunov and A. Buzdin are acknowledged. This work was supported by the Beilstein Institut, Frankfurt/M, within the research collaboration NanoBiC. This work was done within the framework of the NanoSC-COST Action MP120.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maksym Kompaniiets.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kompaniiets, M., Dobrovolskiy, O.V., Neetzel, C. et al. Superconducting Proximity Effect in Crystalline Co and Cu Nanowires. J Supercond Nov Magn 28, 431–436 (2015). https://doi.org/10.1007/s10948-014-2694-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-014-2694-x

Keywords

Navigation