Skip to main content
Log in

Planar Structure Optimization of Extraordinary Magnetoresistance in Semiconductor–Metal Hybrids

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

The performance of extraordinary magnetoresistance (EMR) depends on the material parameters, hybrid structure design, contacts configuration, and manufacturing technology. In this paper, we pay close attention to the hybrid structure of the EMR device. A semiconductor–metal hybrid model based on the finite element method (FEM) is constructed to study the EMR effect, and the results show good agreement with the experimental data. The analysis of the van der Pauw plate structure indicates that the relationship between the two voltage probe contacts and the different EMR structures is the key factor to the design optimization. Accordingly, we find that the elliptic inclusion configurations improve the performance of the van der Pauw structure of EMR devices within a wide range of applied magnetic field (0–5 T). The bar-type and multibranched inclusion structures are subsequently optimized based on this principle. The new structures show excellent performance; more specifically, the modified multibranched inclusion structure displays a 2-fold increase in the magnetoresistance at 0.1 T and more than 2-order-of-magnitude increase at 5 T when compared with the original structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Solin, S.A., Thio, T., Hines, D.R., Heremans, J.J.: . Science 289(5484), 1530 (2000)

    Article  ADS  Google Scholar 

  2. Moller, C.H., Kronenwerth, O., Heyn, C., Grundler, D.: . Appl. Phys. Lett. 84(17), 3343 (2004)

    Article  ADS  Google Scholar 

  3. Solin, S.A., Hines, D.R., Rowe, A.C.H., Tsai, J.S., Pashkin, Y.A., Chung, S.J., Goel, N., Santos, M.B.: . Appl. Phys. Lett. 80(21), 4012 (2002)

    Article  ADS  Google Scholar 

  4. Solin, S.A., Hines, D.R., Rowe, A.C.H., Tsai, J.S., Pashkin, Y.A.: . J. Vac. Sci. Technol. B 21(6), 3002 (2003)

    Article  Google Scholar 

  5. Sun, J., Kosel, J.: . J. Supercond. Nov. Magn. 25(8), 2749 (2012)

    Article  Google Scholar 

  6. Hewett, T.H., Kusmartsev, F.V.: . Central Eur. J. Phys. 10(3), 602 (2012)

    ADS  Google Scholar 

  7. Holz, M., Kronenwerth, O., Grundler, D.: . Appl. Phys. Lett. 83(16), 3344 (2003)

    Article  ADS  Google Scholar 

  8. Moller, C.H., Kronenwerth, O., Grundler, D., Hansen, W., Heyn, C., Heitmann, D.: . Appl. Phys. Lett. 80(21), 3988 (2002)

    Article  ADS  Google Scholar 

  9. Shao, Y., Solin, S.A., Ram-Mohan, L.R., Yoo, K.H.: J. Appl. Phys. 101(12), 123704 (2007)

    Google Scholar 

  10. Sun, J., Kosel, J.: Appl. Phys. Lett. 100(23), 232407 (2012)

    Google Scholar 

  11. Rong, C.B., Zhang, H.W., Sun, J.R., Shen, B.G. Appl. Phys. Lett. 89(5), 052503 (2006)

    Google Scholar 

  12. Hewett, T.H., Kusmartsev, F.V.: Phys. Rev. B 82(21), 212404 (2010)

    Google Scholar 

  13. Moussa, J., Ram-Mohan, L.R., Sullivan, J., Zhou, T., Hines, D.R., Solin, S.A.: Phys. Rev. B 64(18), 184410 (2001)

    Google Scholar 

  14. Hewett, T.H., Kusmartsev, F.V.: . Int. J. Mod. Phys. B 23(20–21), 4158 (2009)

    Article  ADS  MATH  Google Scholar 

  15. Holz, A., Kronenwerth, O., Grundler, D.: . Phys. E-Low-Dimensional Syst. Nanostruct. 21(2–4), 897 (2004)

    Article  ADS  Google Scholar 

  16. Sun, J., Gooneratne, C.P., Kosel, J.: . IEEE Sensors J. 12(5), 1356 (2012)

    Article  Google Scholar 

  17. Zhou, T., Solin, S.A., Hines, D.R.: . J. Magn. Magn. Mater. 226, 1976 (2001)

    Article  ADS  Google Scholar 

  18. Rong, C.B., Zhang, H.W., Sun, J.R., Shen, B.G.: . J. Magn. Magn. Mater. 301(2), 407 (2006)

    Article  ADS  Google Scholar 

  19. Rowe, A.C.H., Solin, S.A.: Phys. Rev. B 71(23), 235323 (2005)

    Google Scholar 

  20. von Kreutzbruck, M., Mogwitz, B., Gruhl, F., Kienle, L., Korte, C., Janek, J.: Appl. Phys. Lett. 86(7), 072102 (2005)

    Google Scholar 

  21. Zhou, T., Hines, D.R., Solin, S.A.: . Appl. Phys. Lett. 78(5), 667 (2001)

    Article  ADS  Google Scholar 

  22. Holz, M., Kronenwerth, O., Grundler, D.: . Appl. Phys. Lett. 83(16), 3344 (2003)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by the program of the Ministry of Education, China (Grant No. 62501040204).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lingyun Ye.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, T., Ye, L., Song, K. et al. Planar Structure Optimization of Extraordinary Magnetoresistance in Semiconductor–Metal Hybrids. J Supercond Nov Magn 27, 2059–2066 (2014). https://doi.org/10.1007/s10948-014-2537-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-014-2537-9

Keywords

Navigation