Skip to main content
Log in

Recurrence Tracking Microscope: Nanoscanning Via Bose–Einstein Condensation

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

A recurrence tracking microscope works on quantum recurrence phenomena of the wave packet and probes nanostructures on a surface. The important advantage of condensed atoms over cold atoms is the very small distribution size due to the atom–atom interactions. We report a more precise measurement of the quantum revival time. For small nonlinear interatomic interactions, there is a small change in quantum revival times; however, as the interaction becomes stronger, we find visible changes in the revival time. The change in the initial height of the nanoparticles is due to the variation in the revival times at different positions of the cantilever.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Binnig, H. Rohrer, C. Gerber, and E. Weibel, Phys. Rev. Lett., 49, 57 (1982).

    Article  ADS  Google Scholar 

  2. G. H. Binnig and H. Rohrer, J. Res. Dev., 30, 355 (1986).

    Google Scholar 

  3. J. B. Pawley, Handbook of Biological Confocal Microscopy, 3rd ed., Springer, Berlin (2006).

    Book  Google Scholar 

  4. R. A. Lemons and C. F. Quate, Appl. Phys. Lett., 24, 163 (1974).

    Article  ADS  Google Scholar 

  5. J. A. Sidles, Appl. Phys. Lett., 58, 2854 (1991).

    Article  ADS  Google Scholar 

  6. F. Saif, Phys. Rev. A, 73, 033618 (2006).

    Article  ADS  Google Scholar 

  7. H. Khan, M. Umar, M. J. Akram, and F. Saif, J. Russ. Laser Res., 35, 4 (2014).

    Article  Google Scholar 

  8. H. Khan and F. Saif, J. Russ. Laser Res., 32, 1 (2011).

    Google Scholar 

  9. R. W. Robinett, Phys. Rep., 1, 392 (2004).

    MathSciNet  Google Scholar 

  10. F. Saif, Phys. Rep., 419, 207 (2005).

    Article  ADS  Google Scholar 

  11. K. Bongs, S. Burger, G. Birkl, et al., Phys. Rev. Lett., 83, 3577 (1999).

    Article  ADS  Google Scholar 

  12. J. L. Roberts, N. R. Claussen, S. L. Cornish, et al., Phys. Rev. Lett., 86, 4211 (2001).

    Article  ADS  Google Scholar 

  13. F. Dalfovo, S. Giorgini, L. Pitaevskii, and S. Stringari, Rev. Mod. Phys., 71, 463 (1997).

    Article  ADS  Google Scholar 

  14. M. Mewes, M. Andrews, N. Druten, et al., Phys. Rev. Lett., 77, 416 (1996).

    Article  ADS  Google Scholar 

  15. H. Perrin, Y. Colombe, B. Mercier, et al., J. Phys. B: At. Mol. Opt. Phys., 39 (2006).

  16. P. J. Parker and C. Stroud, Phys. Rev. Lett., 56, 716 (1986).

    Article  ADS  Google Scholar 

  17. J. Wals, H. H. Fielding, J. F. Christian, et al., Phys. Rev. Lett., 72, 3783 (1994).

    Article  ADS  Google Scholar 

  18. D. Rychtarik, B. Engeser, H. C. Ngerl, R. Grimm, Phys. Rev. Lett., 92, 173003 (2004).

    Article  ADS  Google Scholar 

  19. V. S. Filho, A. Gammal, and L. Tomio, Phys. Rev. A, 66, 043605 (2002).

    Article  ADS  Google Scholar 

  20. N. N. Bogoliubov, J. Phys. (Moscow), 11, 23 (1947).

  21. Y. Ovchinnikov, I. Manek, and R. Grimm, Phys. Rev. Lett., 79, 2225 (1997).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hayat Khan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, H., Saif, F. Recurrence Tracking Microscope: Nanoscanning Via Bose–Einstein Condensation. J Russ Laser Res 38, 1–8 (2017). https://doi.org/10.1007/s10946-017-9615-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-017-9615-y

Keywords

Navigation