Skip to main content
Log in

Highly ordered mesoporous CoFe2O4 and CuFe2O4 with crystalline walls

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

The highly ordered mesoporous CoFe2O4 and CuFe2O4 with crystalline walls can be synthesized by hard template with using mesoporous silica SBA-15 as hard template and using ferric nitrate, cobalt nitrate, and copper nitrate as metal precursors. These new mesoporous materials above have high surface areas, narrow pore size distribution, and large pore volumes, which are believed to be valuable for the potential application in the field of sensors, catalysis, message recording, magnetics, and biology. This work provides a method to fabricate the highly ordered mesoporous materials composed of multi-metal oxides with crystalline walls. The development of such versatile approach is of great significance in practical application. It can be envisaged that this established method is significantly expandable to the controlled synthesis of the mesoporous functional materials with diverse compositions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. C.T. Kresge, M.E. Leonowicz, W.J. Roth, J.C. Vartuli, J.S. Beck, Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 359, 710–712 (1992)

    Article  CAS  Google Scholar 

  2. J.S. Beck, J.C. Vartuli, W.J. Roth, M.E. Leonowicz, C.T. Kresge, K.D. Schmitt, C.T.W. Chu, D.H. Olson, E.W. Sheppard, S.B. McCullen, J.B. Higgins, J.L. Schlenkert, A new family of mesoporous molecular sieves prepared with liquid crystal templates. J. Am. Chem. Soc. 114, 10834–10843 (1992)

    Article  CAS  Google Scholar 

  3. J. Li, Y.S. Lin, Facile synthesis of ordered mesoporous silica with high γ-Fe2O3 loading via sol–gel process. J. Mater. Sci. 43, 6359–6365 (2008)

    Article  CAS  Google Scholar 

  4. L. Zhu, X. Li, X. Feng, X. Li, X. Xu, Synthesis and characterization of mesoporous graphite carbon, and adsorption performance for benzene. J. Porous Mater. 23, 957–965 (2016)

    Article  CAS  Google Scholar 

  5. A. Taguchi, F. Schüth, Ordered mesoporous materials in catalysis. Microporous Mesoporous Mater. 77, 1–45 (2005)

    Article  CAS  Google Scholar 

  6. J. Sauer, S. Kaskel, M. Janicke, F. Schüth, Zirconia nanoparticles in ordered mesoporous material SBA-15. Stud. Surf. Sci. Catal. 135, 315 (2001)

    Article  Google Scholar 

  7. C.A. Morris, M.L. Anderson, R.M. Stroud, C.I. Merzbacher, D.R. Rolison, Silica sol as a nanoglue: flexible synthesis of composite aerogels. Science 284, 622–624 (1999)

    Article  CAS  Google Scholar 

  8. M. Nikoorazm, A. Ghorbani-Choghamarani, A. Jabbari, A facile preparation of palladium Schiff base complex supported into MCM-41 mesoporous and its catalytic application in Suzuki and Heck reactions. J. Porous Mater. 23, 967–975 (2016)

    Article  CAS  Google Scholar 

  9. M.A. Carreon, V.V. Guliants, Ordered meso- and macro-porous binary and mixed metal oxides. Eur. J. Inorg. Chem. 1, 27–43 (2005)

    Article  Google Scholar 

  10. P. Krawiec, E. Kockrick, P. Simon, G. Auffermann, S. Kaskel, Platinum-catalyzed template removal for the in situ synthesis of MCM-41 supported catalysts. Chem. Mater. 18, 2663–2669 (2006)

    Article  CAS  Google Scholar 

  11. L. Zhang, G.C. Papaefthymiou, J.Y. Ying, Synthesis and properties of γ-Fe2O3 nanoclusters within mesoporous aluminosilicate matrices. J. Phys. Chem. B 105, 7414–7423 (2001)

    Article  CAS  Google Scholar 

  12. I. Kiricsi, Thermal stability of platinum particles embedded in mesoporous silicates. J. Therm. Anal. Calorim. 79, 573–577 (2005)

    Article  Google Scholar 

  13. Q. Huo, D.I. Margolese, U. Ciesla, P. Feng, T.E. Gier, P. Sieger, R. Leon, P.M. Petroff, F. Schüth, G.D. Stucky, Generalized synthesis of periodic surfactant/inorganic composite materials. Nature 368, 317–321 (1994)

    Article  CAS  Google Scholar 

  14. J.T. Lu, Y. Zhang, C.L. Jiao, S.K. Megarajan, D. Gu, G. Yang, H. Jiang, C. Jia, F. Schüth, Effect of reduction–oxidation treatment on structure and catalytic properties of ordered mesoporous Cu–Mg–Al composite oxides. Sci. Bull. 59, 3260–3265 (1994)

    Google Scholar 

  15. E.L. Crepaldi, A.A. Soler-Illia, G.J.D. de Grosso, F. Cagnol, F. Ribot, C. Sanchez, Controlled formation of highly organized mesoporous titania thin films: from mesostructured hybrids to mesoporous nanoanatase TiO2. J. Am. Chem. Soc. 125, 9770–9786 (2003)

    Article  CAS  Google Scholar 

  16. A.K. Sinha, K. Suzuki, Three-dimensional mesoporous chromium oxide: a highly efficient material for the elimination of volatile organic compounds. Angew. Chem. Int. Ed. 44, 271–273 (2005)

    Article  CAS  Google Scholar 

  17. H. Shibata, T. Ogura, T. Mukai, T. Ohkubo, H. Sakai, M. Abe, Direct synthesis of mesoporous titania particles having a crystalline wall. J. Am. Chem. Soc. 127, 16396–16397 (2005)

    Article  CAS  Google Scholar 

  18. Y. Wang, C.M. Yang, W. Schmidt, B. Spliethoff, E. Bill, F. Schüth, Weakly ferromagnetic ordered mesoporous Co3O4 synthesized by nanocasting from vinyl-functionalized cubic Ia3d mesoporous silica. Adv. Mater. 17, 53–56 (2005)

    Article  CAS  Google Scholar 

  19. F. Jiao, A. Harrison, J.C. Jumas, A.V. Chadwick, W. Kockelmann, P.G. Bruce, Ordered mesoporous Fe2O3 with crystalline walls. J. Am. Chem. Soc. 128, 5468–5474 (2006)

    Article  CAS  Google Scholar 

  20. X. Lai, X. Li, W. Geng, J. Tu, J. Li, S. Qiu, Ordered mesoporous copper oxide with crystalline walls. Angew. Chem. Int. Ed. 46, 738–741 (2007)

    Article  CAS  Google Scholar 

  21. D. Grosso, C. Boissière, B. Smarsly, T. Brezesinski, N. Pinna, P.A. Albouy, H. Amenitsch, M. Antonietti, C. Sanchez, Periodically ordered nanoscale islands and mesoporous films composed of nanocrystalline multimetallic oxides. Nat. Mater. 3, 787–792 (2004)

    Article  CAS  Google Scholar 

  22. M.H. Bartl, S.W. Boettcher, K.L. Frindell, G.D. Stucky, 3-D molecular assembly of function in titania-based composite material systems. Acc. Chem. Res. 38, 263–271 (2005)

    Article  CAS  Google Scholar 

  23. A. Corma, From microporous to mesoporous molecular sieve materials and their use in catalysis. Chem. Rev. 97, 2373–2420 (1997)

    Article  CAS  Google Scholar 

  24. A.H. Lu, F. Schüth, Nanocasting: a versatile strategy for creating nanostructured porous materials. Adv. Mater. 18, 1793–1805 (2006)

    Article  CAS  Google Scholar 

  25. J. Lee, J. Kim, T. Hyeon, Recent progress in the synthesis of porous carbon materials. Adv. Mater. 18, 2073–2094 (2006)

    Article  CAS  Google Scholar 

  26. F. Jiao, K.M. Shaju, P.G. Bruce, Synthesis of nanowire and mesoporous low-temperature LiCoO2 by a post-templating reaction. Angew. Chem. Int. Ed. 44, 6550–6553 (2005)

    Article  CAS  Google Scholar 

  27. J.Y. Luo, Y.G. Wang, H.M. Xiong, Y.Y. Xia, Ordered mesoporous spinel LiMn2O4 by a soft-chemical process as a cathode material for lithium-ion batteries. Chem. Mater. 19, 4791–4795 (2007)

    Article  CAS  Google Scholar 

  28. S. Kuo, N. Wu, Electrochemical characterization on MnFe2O4/carbon black composite aqueous supercapacitors. J. Power Sources 162, 1437–1443 (2006)

    Article  CAS  Google Scholar 

  29. L. Yu, G. Zhang, C. Yuan, X.W. Lou, Hierarchical NiCo2O4@MnO2 core–shell heterostructured nanowire arrays on Ni foam as high-performance supercapacitor electrodes. Chem. Commun. 49, 137–139 (2013)

    Article  CAS  Google Scholar 

  30. W. Zhang, B. Quan, C. Lee, S.K. Park, X. Li, E. Choi, G. Diao, Y. Piao, One-step facile solvothermal synthesis of copper ferrite–graphene composite as a high-performance supercapacitor material. ACS Appl. Mater. Interfaces 7, 2404–2414 (2015)

    Article  CAS  Google Scholar 

  31. R.K. Selvan, V. Krishnan, C.O. Augustin, H. Bertagnolli, C.S. Kim, A. Gedanken, Investigations on the structural, morphological, electrical, and magnetic properties of CuFe2O4–NiO nanocomposites. Chem. Mater. 20, 429–439 (2008)

    Article  CAS  Google Scholar 

  32. J. Haetge, C. Suchomski, T. Brezesinski, Ordered mesoporous MFe2O4 (M=Co, Cu, Mg, Ni, Zn) thin films with nanocrystalline walls, Uniform 16 nm diameter pores and high thermal stability: template-directed synthesis and characterization of redox active trevorite. Inorg. Chem. 49, 11619–11626 (2010)

    Article  CAS  Google Scholar 

  33. S. Diodati, L. Pandolfo, A. Caneschi, S. Gialanella, S. Gross, Green and low temperature synthesis of nanocrystalline transition metal ferrites by simple wet chemistry routes. Nano Res. 7, 1027–1042 (2014)

    Article  CAS  Google Scholar 

  34. H. Zhao, Y.M. Dong, G.L. Wang, P.P. Jiang, J.J. Zhang, L. Wu, K. Li, Novel magnetically separable nanomaterials for heterogeneous catalytic ozonation of phenol pollutant: NiFe2O4 and their performances. Chem. Eng. J. 219, 295–302 (2013)

    Article  CAS  Google Scholar 

  35. Y.N. Ko, S.B. Park, J.H. Lee, Y.C. Kang, Comparison of the electrochemical properties of yolk–shell and dense structured CoFe2O4 powders prepared by a spray pyrolysis process. RSC Adv. 4, 40188–40192 (2014)

    Article  CAS  Google Scholar 

  36. R. Shao, L. Sun, L.Q. Tang, Z.D. Chen, Preparation and characterization of magnetic core–shell ZnFe2O4@ZnO nanoparticles and their application for the photodegradation of methylene blue. Chem. Eng. J. 217, 185–191 (2013)

    Article  CAS  Google Scholar 

  37. U. Lüders, A. Barthélémy, M. Bibes, K. Bouzehouane, S. Fusil, E. Jacquet, J.P. Contour, J.F. Bobo, J. Fontcuberta, A. Fert, NiFe2O4: a versatile spinel material brings new opportunities for spintronics. Adv. Mater. 18, 1733–1736 (2006)

    Article  Google Scholar 

  38. H.G. Kim, P.H. Borse, J.S. Jang, E.D. Jeong, O.S. Jung, Y.J. Suh, J.S. Lee, Fabrication of CaFe2O4/MgFe2O4 bulk heterojunction for enhanced visible light photocatalysis. Chem. Commun. 41, 5889–5891 (2009)

    Article  Google Scholar 

  39. F. Jiao, J.C. Jumas, M. Womes, A.V. Chadwick, A. Harrison, P.G. Bruce, Synthesis of ordered mesoporous Fe3O4 and γ-Fe2O3 with crystalline walls using post-template reduction/oxidation. J. Am. Chem. Soc. 128, 12905–12909 (2006)

    Article  CAS  Google Scholar 

  40. M. Zhu, D. Meng, C. Wang, G. Diao, Facile fabrication of hierarchically porous CuFe2O4 nanospheres with enhanced capacitance property. ACS Appl. Mater. Interfaces 5, 6030–6037 (2013)

    Article  CAS  Google Scholar 

  41. D.Y. Zhao, J. Feng, Q. Huo, N. Melosh, C.H. Fredrickson, B.F. Chmelka, G.D. Stucky, Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 279, 548–552 (1998)

    Article  CAS  Google Scholar 

  42. S.J. Gregg, K.S.W. Sing, Adsorption, surface area and porosity (Academic press, London, 1997)

    Google Scholar 

  43. Z. Jiang, W. Zhang, W. Shangguan, X. Wu, Y. Teraoka, Adsorption of NO molecule on spinel-type CuFe2O4 surface: a first-principles study. J. Phys. Chem. C 115, 13035–13040 (2011)

    Article  CAS  Google Scholar 

  44. B. Sreedhar, A.S. Kumar, D. Yada, CuFe2O4 nanoparticles: a magnetically recoverable and reusable catalyst for the synthesis of 5-substituted 1H-tetrazoles. Tetrahedron Lett. 52, 3565–3569 (2011)

    Article  CAS  Google Scholar 

  45. J. Zhao, Y. Cheng, X. Yan, D. Sun, F. Zhu, Q. Xue, Magnetic and electrochemical properties of CuFe2O4 hollow fibers fabricated by simple electrospinning and direct annealing. CrystEngComm 14, 5879–5885 (2012)

    Article  CAS  Google Scholar 

  46. M. Bomio, P. Lavela, J.L. Tirado, Fe mössbauer spectroscopy and electron microscopy study of metal extraction from CuFe2O4 electrodes in lithium cells. ChemPhysChem 8, 1999–2007 (2007)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support from the National Natural Science Foundation of China (NSFC) (Grant No. 21501197) and Science Foundation of China University of Petroleum, Beijing (Grant No. 2462015YJRC004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen-Xing Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, ZX., Li, MM. Highly ordered mesoporous CoFe2O4 and CuFe2O4 with crystalline walls. J Porous Mater 24, 933–939 (2017). https://doi.org/10.1007/s10934-016-0332-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-016-0332-7

Keywords

Navigation