Skip to main content
Log in

Adsorption of different dyes from aqueous solution using Si-MCM-41 having very high surface area

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Adsorption characteristics of four different dyes Safranin O (cationic), Neutral Red (neutral), Congo Red (anionic) and Reactive Red 2 (anionic) on Si-MCM-41 material having very high surface area are reported. The surface morphology of Si-MCM-41 material before and after adsorbing dye molecules are characterised by FTIR, HRXRD, nitrogen adsorption–desorption isotherms, FESEM, and HRTEM. The adsorption capacities of Si-MCM-41 for the dyes followed a decreasing order of NR > SF > CR > RR2. The adsorption kinetics, isotherm and thermodynamic parameters are investigated in detail for these dyes using calcined Si-MCM-41. The kinetics and isotherm data showed that both SF and NR adsorb more rapidly than CR and RR2, in accordance with pseudo-second-order kinetics model as well as intraparticle diffusion kinetics model and Langmuir adsorption isotherm model respectively. The thermodynamic data suggest that the dye uptake process is spontaneous. The high adsorption capacities of dyes on Si-MCM-41 (qm = 275.5 mg g−1 for SF, qm = 288.2 mg g−1 for NR) is explained on the basis of electrostatic interactions as well as H-bonding interactions between adsorbent and adsorbate molecules. Good regeneration capacity is another important aspect of the material that makes it potent for the uptake of dyes from aqueous solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

qm :

Adsorption capacity

MW :

Molecular weight

C0 and Ce :

Initial and equilibrium concentrations of adsorbate solutions (mg L−1)

V:

The volume of the dye solution

W:

The weight of the adsorbent

E = hv:

Plank equation

S:

The pore size dependent on the assumed pore geometry

Vp :

The mesoporous volume

ρ:

The pore wall density (i.e. 2.2 cm3/g for siliceous materials)

d:

The XRD interplanar spacing

R2 :

Correlation coefficient

χ2 :

Correction factor

RL :

Separation factor

ΔG°:

The change in Gibbs free energy (J Mol−1)

ΔH°:

The change in enthalpy (J Mol−1)

ΔS°:

The change in entropy (J Mol−1 K−1)

References

  1. M.A. Al-Ghouti, M. Khraisheh, S.J. Allen, M.N. Ahmad, The removal of dyes from textile wastewater: a study of the physical characteristics and adsorption mechanisms of diatomaceous earth. J. Environ. Manage. 69, 229–238 (2003)

    Article  CAS  Google Scholar 

  2. S. Ray, M. Takafuji, H. Ihara, Peptide-based surface modified silica particles: adsorption materials for dye-loaded wastewater treatment. RSC Adv. 3, 23664–23672 (2013)

    Article  CAS  Google Scholar 

  3. H.A. Mekkawy, M.O. Ali, A.M. El-Zawahry, Toxic effect of synthetic and natural food dyes on renal and hepatic functions in rats. Toxicol. Lett. 95, 155 (1998)

    Article  Google Scholar 

  4. C.K. Lee, S.S. Liu, L.C. Jaung, C.C. Wang, K.S. Lin, M.D. Lyu, Application of MCM-41 for dyes removal from wastewater. J. Hazard. Mater. 147, 997–1005 (2007)

    Article  CAS  Google Scholar 

  5. D. Pokhrel, T. Viraraghavan, Treatment of pulp and paper mill wastewater—a review. Sci. Total Environ. 333, 37–58 (2004)

    Article  CAS  Google Scholar 

  6. O. Tunay, I. Kabdasli, G. Eremektar, D. Orhon, Color removal from textile wastewaters. Water Sci. Technol. 34, 9–16 (1996)

    Article  CAS  Google Scholar 

  7. A. Cassano, R. Molinari, M. Romano, E. Drioli, Treatment of aqueous effluents of the leather industry by membrane processes: a review. J. Membr. Sci. 181, 111–126 (2001)

    Article  CAS  Google Scholar 

  8. K. Srinivasan, M.M. Bhargava, Hepatic binding proteins translocating azo dye carcinogen metabolites from cytoplasm into nucleus in rats. Food Chem. Toxicol. 42, 503–508 (2004)

    Article  CAS  Google Scholar 

  9. E. Forgacs, T. Cserhati, G. Oros, Removal of synthetic dyes from wastewaters: a review. Environ. Int. 30, 953–971 (2004)

    Article  CAS  Google Scholar 

  10. G. Crini, Non-conventional low-cost adsorbents for dye removal: a review. Bioresour. Technol. 97, 1061–1085 (2006)

    Article  CAS  Google Scholar 

  11. E.N. El Qada, S.J. Allen, G.M. Walker, Adsorption of Methylene Blue onto activated carbon produced from steam activated bituminous coal: a study of equilibrium adsorption isotherm. Chem. Eng. J. 124, 103–110 (2006)

    Article  Google Scholar 

  12. Z.X. Wu, D.Y. Zhao, Ordered mesoporous materials as adsorbents. Chem. Commun. 47, 3332–3338 (2011)

    Article  CAS  Google Scholar 

  13. O.G. Rhys, Adsorption on activated carbon-solution to dye waste problems. J. Soc. Dyers Colour 94, 293–297 (1978)

    CAS  Google Scholar 

  14. K.R. Ramakrishna, T. Viraraghavan, Dye removal using low cost adsorbents. Water Sci. Technol. 36, 189–196 (1997)

    Article  CAS  Google Scholar 

  15. M. Doğan, M. Alkan, Adsorption kinetics of methyl violet onto perlite. Chemosphere 50, 517–528 (2003)

    Article  Google Scholar 

  16. C.C. Wang, L.C. Juang, T.C. Hsu, C.K. Lee, J.F. Lee, F.C. Huang, Adsorption of basic dyes onto montmorillonite. J. Colloid Interface Sci. 273, 80–86 (2004)

    Article  CAS  Google Scholar 

  17. C. Namasivayam, R.T. Yamuna, Adsorption of direct red 12B by biogas residual slurry: equilibrium and rate processes. Environ. Pollut. 89, 1–7 (1995)

    Article  CAS  Google Scholar 

  18. S. Netpradit, P. Thiravetyan, S. Towprayoon, Application of ‘waste’ metal hydroxide sludge for adsorption of azo reactive dyes. Water Res. 37, 763–772 (2003)

    Article  CAS  Google Scholar 

  19. T. Robinson, B. Chandran, P. Nigam, Removal of dyes from an artificial textile dye effluent by two agricultural waste residues, corncob and barley husk. Environ. Int. 28, 29–33 (2002)

    Article  CAS  Google Scholar 

  20. G. Annadurai, R.S. Juang, D.J. Lee, Use of cellulose-based wastes for adsorption of dyes from aqueous solutions. J. Hazard. Mater. 92, 263–274 (2002)

    Article  CAS  Google Scholar 

  21. Y. Al-Degs, M.A.M. Khraisheh, S.J. Allen, M.N. Ahmad, Effect of carbon surface chemistry on the removal of reactive dyes from textile effluent. Water Res. 34, 927–935 (2000)

    Article  CAS  Google Scholar 

  22. A.G. Espantaleon, J.A. Nieto, M. Fernandez, A. Marsal, Use of activated clays in the removal of dyes and surfactants from tannery waste waters. Appl. Clay Sci. 24, 105–110 (2003)

    Article  CAS  Google Scholar 

  23. J.S. Beck, C. Vartuli, W.J. Roth, M.E. Leonowicz, C.T. Kresge, K.D. Scmmitt, C.T.-W. Chu, D.H. Olson, E.W. Sheppard, S.B. McCullen, J.B. Higgins, J.L. Schlenker, A new family of mesoporous molecular sieves prepared with liquid crystal templates. J. Am. Chem. Soc. 114, 10834–10843 (1992)

    Article  CAS  Google Scholar 

  24. L. Zhou, C. Gao, W. Xu, Magnetic dendritic materials for highly efficient adsorption of dyes and drugs. ACS Appl. Mater. Interfaces 2, 1483–1491 (2010)

    Article  CAS  Google Scholar 

  25. S. Qadri, A. Ganoe, Y. Haik, Removal and recovery of acridine orange from solutions by use of magnetic nanoparticles. J. Hazard. Mater. 169, 318–323 (2009)

    Article  CAS  Google Scholar 

  26. A. Afkhami, R. Moosavi, Adsorptive removal of Congo red, a carcinogenic textile dye, from aqueous solutions by maghemite nanoparticles. J. Hazard. Mater. 174, 398–403 (2010)

    Article  CAS  Google Scholar 

  27. Y. Yu, Y.Y. Zhuang, Z.H. Wang, M.Q. Qiu, Adsorption of water-soluble dyes onto resin NKZ. Ind. Eng. Chem. Res. 42, 6898–6903 (2003)

    Article  CAS  Google Scholar 

  28. J. Huh, D. Song, Y. Jeon, Sorption of phenol and alkylphenols from aqueous solution onto organically modified montmorillonite and applications of dual-mode sorption model. Sep. Sci. Technol. 35, 243–259 (2000)

    Article  CAS  Google Scholar 

  29. H. Zhao, K.L. Nagy, Dodecyl sulfate–hydrotalcite nanocomposites for trapping chlorinated organic pollutants in water. J. Colloid Interface Sci. 274, 613–624 (2004)

    Article  CAS  Google Scholar 

  30. A. Sayari, S. Hamoudi, Y. Yang, Applications of pore-expanded mesoporous silica. 1. Removal of heavy metal cations and organic pollutants from wastewater. Chem. Mater. 17, 212–216 (2005)

    Article  CAS  Google Scholar 

  31. R. Liu, P. Liao, J. Liu, P. Feng, Responsive polymer-coated mesoporous silica as a pH-sensitive nanocarrier for controlled release. Langmuir 27, 3095–3099 (2011)

    Article  CAS  Google Scholar 

  32. L.C. Juang, C.C. Wang, C.K. Lee, Adsorption of basic dyes onto MCM-41. Chemosphere 64, 1920–1928 (2006)

    Article  CAS  Google Scholar 

  33. X.S. Zhao, G.Q. Lu, G.J. Millar, Advances in mesoporous molecular sieve MCM-41. Ind. Eng. Chem. Res. 35, 2075–2090 (1996)

    Article  CAS  Google Scholar 

  34. J. Wloch, M. Rozwadowski, M. Lezanska, K. Erdmann, Analysis of the pore structure of the MCM-41 materials. Appl. Surf. Sci. 191, 368–374 (2002)

    Article  CAS  Google Scholar 

  35. N.A. Oladoja, A.K. Akinlabi, Congo red biosorption on palm kernel seed coat. Ind. Eng. Chem. Res. 48, 6188–6196 (2009)

    Article  CAS  Google Scholar 

  36. S. Chatterjee, M.W. Lee, S.H. Woo, Adsorption of congo red by chitosan hydrogel beads impregnated with carbon nanotubes. Bioresour. Technol. 101, 1800–1806 (2010)

    Article  CAS  Google Scholar 

  37. Z. Qiao, L. Zhang, M. Guo, Y. Liu, Q. Huo, Synthesis of mesoporous silica nanoparticles via controlled hydrolysis and condensation of silicon alkoxide. Chem. Mater. 21, 3823–3829 (2009)

    Article  CAS  Google Scholar 

  38. S. Ghorai, A.K. Sarkar, A.B. Panda, S. Pal, Effective removal of Congo red dye from aqueous solution using modified xanthan gum/silica hybrid nanocomposite as adsorbent. Bioresour. Technol. 144, 485–491 (2013)

    Article  CAS  Google Scholar 

  39. S. Ghorai, A. Sinhamahpatra, A. Sarkar, A.B. Panda, S. Pal, Novel biodegradable nanocomposite based on XG-g-PAM/SiO2: application of an efficient adsorbent for Pb2+ ions from aqueous solution. Bioresour. Technol. 119, 181–190 (2012)

    Article  CAS  Google Scholar 

  40. M.S. Sajab, C.H. Chia, S. Zakaria, S.M. Jani, M.K. Ayob, K.L. Chee, P.S. Khiew, W.S. Chiu, Citric acid modified kenaf core fibres for removal of methylene blue from aqueous solution. Bioresour. Technol. 102, 7237–7243 (2011)

    Article  CAS  Google Scholar 

  41. G. Crini, H.N. Peindy, F. Gimbert, C. Robert, Removal of C.I. basic green 4 (malachite green) from aqueous solutions by adsorption using cyclodextrin-based adsorbent: kinetic and equilibrium studies. Sep. Purif. Technol. 53, 97–110 (2007)

    Article  CAS  Google Scholar 

  42. G. Gu, P.P. Ong, C. Chu, Thermal stability of mesoporous silica molecular sieve. J. Phys. Chem. Solids 60, 943–947 (1999)

    Article  CAS  Google Scholar 

  43. M. Kruk, M. Jaroniec, A. Sayari, Structural and surface properties of siliceous and titanium-modified HMS molecular sieves. Micropor. Mater. 9, 173–182 (1997)

    Article  CAS  Google Scholar 

  44. S. Legergren, About the theory of so-called adsorption of soluble substances. K. Sven. Vetenskapsakad. Handl. 24, 1–39 (1898)

    Google Scholar 

  45. Y.S. Ho, G. McKay, Pseudo-second order model for sorption processes. Process Biochem. 34, 451–465 (1999)

    Article  CAS  Google Scholar 

  46. Y.S. Ho, Second-order kinetic model for the sorption of cadmium onto tree fern: a comparison of linear and non-linear methods. Water Res. 40, 119–125 (2006)

    Article  CAS  Google Scholar 

  47. W.J. Weber, J.C. Morris, Kinetics of adsorption on carbon from solution. J. San. Eng. Div. ASCE 89, 31–59 (1963)

    Google Scholar 

  48. A. Ozcan, A.S. Ozcan, Adsorption of acid red 57 from aqueous solutions onto surfactant-modified sepiolite. J. Hazard. Mater. 125, 252–259 (2005)

    Article  Google Scholar 

  49. L. Ai, C. Zhang, L. Meng, Adsorption of methyl orange from aqueous solution on hydrothermal synthesized Mg–Al layered double hydroxide. J. Chem. Eng. Data 56, 4217–4225 (2011)

    Article  CAS  Google Scholar 

  50. I. Langmuir, The constitution and fundamental properties of solids and liquids. J. Am. Chem. Soc. 38, 2221–2295 (1916)

    Article  CAS  Google Scholar 

  51. H.M.F. Freundlich, Uber die adsorption in Losungen. Z. Phys. Chem. 57, 385–470 (1906)

    CAS  Google Scholar 

  52. M.J. Temkin, V. Pyzhev, Recent modifications to Langmuir isotherms. Acta. Physicochem. 12, 217–222 (1940)

    Google Scholar 

  53. M.M. Ayad, A.A. El-Nasr, Adsorption of cationic dye (methylene blue) fromwater using polyaniline nanotubes base. J. Phys. Chem. C 114, 14377–14383 (2010)

    Article  CAS  Google Scholar 

  54. S. Chowdhury, R. Mishra, P. Saha, P. Kushwaha, Adsorption thermodynamics, kinetics and isosteric heat of adsorption of Malachite green onto chemically modified rice husk. Desalination 265, 159–168 (2011)

    Article  CAS  Google Scholar 

  55. X.F. Sun, S.G. Wang, X.W. Liu, W.X. Gong, N. Bao, B.Y. Gao, H.Y. Zhang, Biosorption of malachitegreen from aqueous solutions onto aerobic granules: kinetic and equilibrium studies. Bioresour. Technol. 99, 3475–3483 (2008)

    Article  CAS  Google Scholar 

  56. Y. Zhou, M. Zhang, X. Hu, X. Wang, J. Niu, T. Ma, Adsorption of cationic dyes on a cellulose-based multicarboxyl adsorbent. J. Chem. Eng. Data 58, 413–421 (2013)

    Article  CAS  Google Scholar 

  57. S. Ghorai, A. Sarkar, M. Raoufi, A.B. Panda, H. Schonherr, S. Pal, Enhanced removal of methylene blue and methyl violet dyes from aqueous solution using a nanocomposite of hydrolyzed polyacrylamide grafted xanthan gum and incorporated nanosilica. ACS Appl. Mater. Interfaces 6, 4766–4777 (2014)

    Article  CAS  Google Scholar 

  58. I.D. Mall, V.C. Srivastava, G.V.A. Kumar, I.M. Mishra, Characterization and utilization of mesoporous fertilizer plant waste carbon for adsorptive removal of dyes from aqueous solution, colloids and surfaces A: physicochem. Eng. Aspects 278, 175–187 (2006)

    Article  CAS  Google Scholar 

  59. A. Roy, S. Chakraborty, S.P. Kundu, B. Adhikari, S.B. Majumder, Lignocellulosic jute fiber as a bioadsorbent for the removal of azo dye from its aqueous solution: batch and column studies. J. Appl. Poly. Sci. 129, 15–27 (2013)

    Article  CAS  Google Scholar 

  60. R.S. Blackburn, Natural polysaccharides and their interactions with dye molecules: applications in effluent treatment. Environ. Sci. Technol. 38, 4905–4909 (2004)

    Article  CAS  Google Scholar 

  61. G.Z. Kyzas, M. Kostoglou, N.K. Lazaridis, Relating interactions of dye molecules with chitosan to adsorption kinetic data. Langmuir 26, 9617–9626 (2010)

    Article  CAS  Google Scholar 

  62. H. Chaudhuri, S. Dash, A. Sarkar, Synthesis and use of SBA-15 adsorbent for dye-loaded wastewater treatment. J. Environ. Chem. Eng. 3, 2866–2874 (2015)

    Article  CAS  Google Scholar 

  63. N.M. Mahmoodi, Equilibrium kinetics and thermodynamics of dye removal using alginate in binary systems. J. Chem. Eng. Data 56, 2802–2811 (2011)

    Article  CAS  Google Scholar 

  64. C.P. Sekhar, S. Kalidhasan, V. Rajesh, N. Rajesh, Bio-polymer adsorbent for the removal of malachite green from aqueous solution. Chemosphere 77, 842–847 (2009)

    Article  Google Scholar 

  65. H. Chaudhuri, S. Dash, S. Ghoari, S. Pal, A. Sarkar, SBA-16: application for the removal of neutral, cationic, and anionic dyes from aqueous medium. J. Environ. Chem. Eng. 4, 157–166 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

H.C is thankful to the Director, Indian School of Mines, Dhanbad for providing research fellowship. Authors would like to thank CRF at Indian School of Mines, Dhanbad for providing FESEM facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashis Sarkar.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1235 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaudhuri, H., Dash, S. & Sarkar, A. Adsorption of different dyes from aqueous solution using Si-MCM-41 having very high surface area. J Porous Mater 23, 1227–1237 (2016). https://doi.org/10.1007/s10934-016-0181-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-016-0181-4

Keywords

Navigation