Skip to main content
Log in

Carboxymethylcellulose template synthesis of porous aluminium oxide from hybrid spheres: influence of the degree of substitution and polymerization

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Catalytic supports based on aluminum oxide were synthesized by the method of hybrid spheres using carboxymethylcellulose as organic precursor (template) and aluminum nitrate as inorganic precursor. The characterizations were performed by analysis of TG, XRD, FTIR, SEM and N2 physisorption. The study of synthesis indicated that the characteristics of the biopolymer (degree of substitution and polymerization) directly influence on the limit ratio between organic and inorganic precursor in order to observe the formation of the hybrid spheres. The physicochemical properties of the final material (structure by XRD, texture by N2 physisorption and morphology by SEM) showed a direct dependence with the biopolymer properties, indicating the versatility of this synthetic route. FTIR spectra confirm the formation of a hybrid material, comparing the pure CMC spectrum with the solids after drying. N2 adsorption/desorption isotherm and SEM images confirm the formation of highly porous materials with a specific surface area between 50 and 162 m2/g.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. M. Schmal, Catálise Heterogênia, vol.1, ed. by (Synergia, Rio de Janeiro, 2011)

  2. J.L. Figueiredo, F.R. Ribeiro, Catálise Heterogénia, vol. 2, ed. by (Lisboa, Fundação Calouste Gulbenkian, 2007)

  3. M. Marturano, E.F. Aglietti, O. Ferretti, Mater. Chem. Phys. 47, 252–256 (1997)

    Article  CAS  Google Scholar 

  4. W. Welters, G. Vorbeck, H. Zandbergen, L. Van de Ven, E. Van Oers, R. Van Santen, J. Catal. 161, 819–828 (1996)

    Article  CAS  Google Scholar 

  5. L. Kaluza, D. Gulková, Z. Vít, M. Zdrazil, Appl. Catal. B Environ. 162, 430–436 (2015)

    Article  CAS  Google Scholar 

  6. A. Dugulan, J. Veen, E. Hensen, Appl. Catal. B Environ. 142, 178–186 (2013)

    Article  Google Scholar 

  7. O.Y. Gutiérrez, T. Klimova, J. Catal. 281, 50–62 (2011)

    Article  Google Scholar 

  8. L. Kaluza, D. Gulková, O. Solcová, N. Zilková, J. Cejka, Appl. Catal. A Gen. 351, 93–101 (2008)

    Article  CAS  Google Scholar 

  9. C.A. Ulín, J.A. Reyes, J. Escobar, M.C. Barrera, M.A. Cortés-Jacome, J. Phys. Chem. Solids 71, 1004–1012 (2010)

    Article  Google Scholar 

  10. A. Ishihara, T. Wakamatsu, H. Nasu, T. Hashimoto, Appl. Catal. A Gen. 478, 58–65 (2014)

    Article  CAS  Google Scholar 

  11. E.J.M. Hensen, D.G. Poduval, P.C.M.M. Magusin, A.E. Coumans, J.A.R. Veen, J. Catal. 269, 201–218 (2010)

    Article  CAS  Google Scholar 

  12. L.L. Pérez, V. Zarubina, A. Mayoral, I. Melián-Cabrera, Catal. Today 250, 115–122 (2015)

    Article  Google Scholar 

  13. R. Chamoun, B. Demirci, D. Cornu, Y. Zaatar, R. Khoury, A. Khoury, P. Miele, Fuel 90, 1919–1926 (2011)

    Article  CAS  Google Scholar 

  14. H. Balcar, J. Cejka, Coord. Chem. Rev. 257, 3107–3124 (2013)

    Article  CAS  Google Scholar 

  15. A. Jafari, N. Saadatjou, S. Sahebdelfar, Int. J. Hydrog. Energy. 40, 3659–3671 (2015)

    Article  CAS  Google Scholar 

  16. M. Rotan, E. Rytter, T.J. Grande, Eur. Ceram. Soc. 33, 1–6 (2013)

    Article  CAS  Google Scholar 

  17. S.C. Kim, Y.K. Parker, Powder Technol. 266, 292–298 (2014)

    Article  CAS  Google Scholar 

  18. J. Zhang, Z. Xin, X. Meng, M. Tao, Fuel 109, 693–701 (2013)

    Article  CAS  Google Scholar 

  19. H. Chen, M. Xue, S. Hu, J. Shen, Chem. Eng. J. 181–182, 677–684 (2012)

    Article  Google Scholar 

  20. M. Darino, F. Pinna, G. Strukul, Appl. Catal. B Environ. 53, 161–168 (2004)

    Article  CAS  Google Scholar 

  21. M.B. Dawidziuk, F. Carrasco-Marın, C. Moreno-Castilla, Carbon 47, 2679–2687 (2009)

    Article  CAS  Google Scholar 

  22. T.P. Braga, A.N. Pinheiro, C.V. Teixeira, A. Valentini, Appl. Catal. A Gen. 366, 193–200 (2009)

    Article  CAS  Google Scholar 

  23. Q. Yua, X. Yao, H. Zhanga, F. Gao, L. Donga, Appl. Catal. A Gen. 423–424, 42–51 (2012)

    Article  Google Scholar 

  24. S. H. Wang, U.G. Hong, J. Lee, J.G. Seo, J.H. Baik, I.K. Song, J. Ind. Eng. Chem. 19, 2016–2021 (2013)

    Article  Google Scholar 

  25. T.P. Braga, R.C.R. Santos, B.M.C. Sales, B.R. da Silva, A.N. Pinheiro, E.R. Leite, A. Valentini, Chin. J. Catal. 35, 514–523 (2014)

    Article  CAS  Google Scholar 

  26. Y. Wang, G. Wu, Y. Wang, X. Wang, Electrochim. Acta 130, 135–140 (2014)

    Article  CAS  Google Scholar 

  27. D. Wang, H. Buq, M.J. Crouzet, Power Sources. 189, 624–628 (2009)

    Article  CAS  Google Scholar 

  28. P.L. Chen, I.W. Chen, J. Am. Chem. Soc. 76, 1577–1583 (1993)

    CAS  Google Scholar 

  29. A.E. Kadib, K. Molvinger, T. Cacciaguerra, M. Bousmina, D. Brunel, Micropor. Mesopor. Mater. 142, 301–307 (2011)

    Article  Google Scholar 

  30. T.P. Braga, D.F. Dias, M.F. de Sousa, J.M. Soares, J.M. Sasaki, J. Alloy Comp. 622, 408–417 (2015)

    Article  CAS  Google Scholar 

  31. H.V. Fajardo, A.O. Martins, R.M. de Almeida, Mater. Lett. 59, 3963–3967 (2005)

    Article  CAS  Google Scholar 

  32. A. Kadib, K. Molvinger, M. Bousmina, D. Brunel, J. Catal. 273, 147–155 (2010)

    Article  Google Scholar 

  33. T.P. Braga, E.C.C. Gomes, A. Valentini, J. Non Cryst. Solids. 355, 860–866 (2009)

    Article  CAS  Google Scholar 

  34. R.L. de Oliveira, H. Baruda, V.R.L. Constantino, Ind. Crop. Prod. 69, 415–423 (2015)

    Article  CAS  Google Scholar 

  35. C.H. Ünlü, Carbohydr. Polym. 97, 159–164 (2013)

    Article  Google Scholar 

  36. M. Yadollahi, H. Namazi, S. Barkhordari, Carbohydr. Polym. 108, 83–90 (2014)

    Article  CAS  Google Scholar 

  37. J. Li, S. Nie, Food Hydrocoll. 53, 46–61 (2016)

    Article  CAS  Google Scholar 

  38. B. Lee, E.J. Oh, Phys. Chem. 117, 4404–4409 (2013)

    Article  CAS  Google Scholar 

  39. A.F. Naves, D.F.S. Petri, Colloids Surf. A. Physicochem. Eng. Asp. 254, 207–214 (2005)

    Article  CAS  Google Scholar 

  40. M.A. Garza-Navarro, J.A. Aguirre-Rosales, E.E. Llanas-Vázquez, V. González-González, Int. J. Polym. Sci. 1, 1–8 (2013)

    Article  Google Scholar 

  41. A.A. Hebeish, M.H. El-Rafie, H.E. Emam, Carbohydr. Polym. 82, 933–941 (2010)

    Article  CAS  Google Scholar 

  42. T. Nissinen, M. Leskela, M. Gasik, J. Lamminen, Thermochim. Acta 427, 155–161 (2005)

    Article  CAS  Google Scholar 

  43. S.K. Padhi, Thermochim. Acta 448, 1–6 (2006)

    Article  CAS  Google Scholar 

  44. C. Ehrhardt, M. Gjikaj, W. Brockner, Thermochim. Acta 432, 36–40 (2005)

    Article  CAS  Google Scholar 

  45. A.A. Ibrahima, A.M. Adel, Z.H. Abd El–Wahab, M.T. Al–Shemya, Carbohydr. Polym. 83, 94–115 (2011)

    Article  Google Scholar 

  46. M. Yadollahi, H.J. Namazi, Nanopart. Res. 1563, 15 (2013)

    Google Scholar 

  47. M. Hashem, S. Sharaf, M.M. Abd El-Hady, A. Hebeish, Carbohydr. Polym. 95, 421–427 (2013)

    Article  CAS  Google Scholar 

  48. A.P. Franco, M.A.L. Recio, B. Szpoganicz, Hydrometallurgy 87, 178–189 (2007)

    Article  CAS  Google Scholar 

  49. Z. Obrenovic, M. Milanovic, R.R. Djenadic, L.M. Nikolic, Ceram. Int. 37, 3253–3263 (2011)

    Article  CAS  Google Scholar 

  50. A.B. Sinfotes, A. Quintero, Lat. Am. App. Res. 40, 185–191 (2010)

    Google Scholar 

  51. Y. Ma, M. Zeng, J. He, L. Duan, J. Wang, J. Li, J. Wang, Appl. Catal. A Gen. 396, 123–128 (2011)

    Article  CAS  Google Scholar 

  52. R.C.R. Santos, A.N. Pinheiro, E.R. Leite, V.N. Freire, E. Longhinotti, A. Valentini, Mater. Chem. Phys. 119–130, 160 (2015)

    Google Scholar 

  53. J. Lee, H. Kim, N. Park, T. Lee, M. Kang, Chem. Eng. J. 230, 351–360 (2013)

    Article  CAS  Google Scholar 

  54. J. Barta, M. Pospisil, V. Cuba, Mater. Res. Bull. 49, 633–639 (2014)

    Article  CAS  Google Scholar 

  55. G. Lefevre, M. Fedoroff, Mater. Lett. 56, 978–983 (2002)

    Article  CAS  Google Scholar 

  56. Z. Shi, We. Jiao, L. Chen, P. Wu, Y. Wang, M.n He, Micropor. Mesopor. Mat. 224, 253–261 (2016)

    Article  CAS  Google Scholar 

  57. S. Abramson, C. Meiller, P. Beaunier, V. Dupuis, L. Perrigaud, A. Bee, V. Cabuila, J. Mater. Chem. 20, 4916–4924 (2010)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

All the members of LABPEMOL, where the experiments and analyzes were performed, and the analytical center of UFRN for the TGA and FTIR analysis. Regina C. dos Santos for the N2 physisorption analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiago Pinheiro Braga.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva, M.T.P., Carvalho, J.C., Pergher, S.B.C. et al. Carboxymethylcellulose template synthesis of porous aluminium oxide from hybrid spheres: influence of the degree of substitution and polymerization. J Porous Mater 23, 811–822 (2016). https://doi.org/10.1007/s10934-016-0136-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-016-0136-9

Keywords

Navigation