Skip to main content
Log in

Porous materials with tunable mechanical properties

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

We present a study of the mechanical properties of porous polymer materials elaborated from the controlled formulation of emulsions and using a polyHIPE templating approach. This consists in the polymerization of high internal phase water-in-oil emulsions of controlled average size and dispersed phase volume fraction. We investigate the evolution of the linear and non-linear mechanical properties as a function of two sets of parameters, that define the structure (namely pore size and volume fraction) and the composition (chemical composition of the polymer walls) of the material. Pore sizes and volume fraction were varied by tuning the initial emulsion size and volume fraction while the solid wall composition was varied by using a mixture of monomers which yield polymers with very different glass transition temperatures T g (namely styrene and ethyl hexyl acrylate which yield polymers with a high and low T g respectively). Unlike the classical models, the two components model that we developed is able to account for the dependence of the measured mechanical properties on the cell size and porosity values. We show that the foam mechanical properties are mainly governed by the T g of the blends. The foams are shown to vary from an elastic-brittle system to a soft ductile material as the proportion of EHA is increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. L.J. Gibson, M.F. Ashby, Cellular Solids: Structure and Properties, 2nd edn. (Cambridge University Press, Cambridge, 1997)

    Book  Google Scholar 

  2. S.K. Maiti, L.J. Gibson, M.F. Ashby, Acta Metall. 32, 1963 (1984)

    Article  CAS  Google Scholar 

  3. G. Ceglia, L. Mahéo, P. Viot, D. Bernard, A. Chirazi, I. Ly, O. Mondain-Monval, V. Schmitt, Eur. Phys. J. E 35, 31 (2012)

    Article  Google Scholar 

  4. P. Viot, L. Maheo, D. Bernard, A. Chirazi, G. Ceglia, V. Schmitt, O. Mondain-Monval, Compos. B Eng. 44, 172 (2013)

    Article  Google Scholar 

  5. D. Barby, Z. Haq, Patent 0 060 138 (1982)

  6. J.M. Williams, D.A. Wrobleski, Langmuir 4, 656 (1988)

    Article  CAS  Google Scholar 

  7. H. Tobushi, R. Matsui, S. Hayashi, D. Shimada, Smart Mater. Struct. 13, 881 (2004)

    Article  CAS  Google Scholar 

  8. M. Di Prima, M. Lesniewski, K. Gall, D.L. McDowell, T. Sanderson, D. Campbell, Smart Mater. Struct. 16, 2330 (2007)

    Article  CAS  Google Scholar 

  9. M. Di Prima, K. Gall, D.L. McDowell, R. Guldberg, A. Lin, T. Sanderson, D. Campbell, S.C. Arzberger, Mechanics of Mater. 42, 304–314 (2010)

    Article  Google Scholar 

  10. L. Domeier, A. Nissen, S. Goods, L. Whinnery, J.M. Elhanon, J. Appl. Polym. Sci. 115, 3217 (2010)

    Article  CAS  Google Scholar 

  11. I. Gurevitch, M.S. Silverstein, Soft Matter 8, 10378 (2012)

    Article  CAS  Google Scholar 

  12. S.S. Manley, N. Graeber, Z. Grof, A. Menner, G.F. Hewitt, F. Stepanek, A. Bismarck, Soft Matter 5, 4780 (2009)

    Article  CAS  Google Scholar 

  13. K. Haibach, A. Menner, R. Powell, A. Bismarck, Polymer 47, 4513 (2006)

    Article  CAS  Google Scholar 

  14. H. Tai, A. Sergienko, M.S. Silverstein, Polym. Eng. Sci. 41, 1540 (2001)

    Article  CAS  Google Scholar 

  15. K.J. Lissant, J. Coll. Interface Sci. 22, 462–468 (1966)

    Article  CAS  Google Scholar 

  16. I. Gurevitch, M.S. Silverstein, J. Polym. Sci., Part A: Polym. Chem. 48, 1516 (2010)

    Article  CAS  Google Scholar 

  17. I. Gurevitch, M.S. Silverstein, Macromolecules 44, 3398 (2011)

    Article  CAS  Google Scholar 

  18. I. Gurevitch, M.S. Silverstein, Macromolecules 45, 6450 (2012)

    Article  CAS  Google Scholar 

  19. J. Bibette, T.G. Mason, Patent No. French Patent 96 04736 PCT SR97/00690 (1996)

  20. C. Mabille, F. Leal-Calderon, J. Bibette, V. Schmitt, Europhys. Lett. 61, 708 (2003)

    Article  CAS  Google Scholar 

  21. C. Mabille, V. Schmitt, P. Gorria, F. Leal-Calderon, V. Faye, B. Deminière, J. Bibette, Langmuir 16, 422 (2000)

    Article  CAS  Google Scholar 

  22. T.G. Mason, J. Bibette, Phys. Rev. Lett. 77, 3481 (1996)

    Article  CAS  Google Scholar 

  23. T.G. Mason, J. Bibette, Langmuir 13, 4600 (1997)

    Article  CAS  Google Scholar 

  24. J. Brandrup, E.H. Immergut, E.A. Grulke (eds.), Polymer Handbook, 4th edn. (Wiley, New York, 1999)

    Google Scholar 

  25. R.J. Carnachan, M. Bokhari, S.A. Przyborski, N.R. Cameron, Soft Matter 2, 608 (2006)

    Article  CAS  Google Scholar 

  26. S. Livshin, M.S. Silverstein, Soft Matter 4, 1630 (2008)

    Article  CAS  Google Scholar 

  27. E. Penzel, J. Rieger, H.A. Schneider, Polymer 38, 25 (1997)

    Article  Google Scholar 

  28. T.G. Fox, Bull. Am. Phys. Soc. 1, 123 (1956)

    CAS  Google Scholar 

  29. M. Gordon, S.J. Taylor, J. Appl. Chem. 2, 493 (1952)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The French National Agency for Research (ANR) is gratefully acknowledged for funding the LIght STRuctures And Composites (LISTRAC) project. The authors thank M. Birot for performing porometry measurements and F. Lequeux for fruitful discussions

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. Schmitt or O. Mondain-Monval.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ceglia, G., Merlin, A., Viot, P. et al. Porous materials with tunable mechanical properties. J Porous Mater 21, 903–912 (2014). https://doi.org/10.1007/s10934-014-9831-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-014-9831-6

Keywords

Navigation