Skip to main content
Log in

Mesoporous hard-templated Me–Co [Me = Cu, Fe] spinel oxides for water gas shift reaction

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Copper–cobalt and iron–cobalt oxides, as well as a cobalt oxide sample, were synthesized through the hard template (HT) route by using SBA-15 silica as the HT. Copper- and iron-containing materials with a Me/(Co + Me) atomic ratio of 9 and 17 mol% were obtained and characterized as to their structure, morphology, texture and redox properties by X-ray diffraction, FTIR spectroscopy, transmission electron microscopy, N2-physisorption and H2-temperature programmed reduction, respectively. All the oxides were tested in a fixed-bed reactor for the water gas shift reaction in the 200–350 °C temperature range. All the catalysts showed a spinel structure, with the copper ions occupying exclusively the tetrahedral positions in the Cu–Co spinels and the iron ions being present in both tetrahedral and octahedral positions in the Fe–Co spinels. Segregation (to a minor extent) of maghemite phase was detected only for the high-concentration iron–cobalt oxide. The materials were replicas of the topological structure of the template, the channels being void replicas of the former walls of the SBA-15 host and the oxide appearing as nanorods, arranged in a highly ordered way in the case of Cu–Co oxides. Compared to Co3O4, the copper-containing and the iron-containing spinels were easier and harder to reduce, respectively. While the catalytic activity of cobalt and iron–cobalt spinels was rather poor, a remarkable water gas shift activity, accompanied (to a minor extent) by methanation, was observed over Cu–Co spinels. The influence of the reduction features on the catalytic performance is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. G.J. Hutchings, R.G. Copperthwaite, F.M. Gottschalk, R. Hunter, J. Mellor, S.W. Orchard, T. Sangiorgio, J. Catal. 137, 408 (1992)

    Article  CAS  Google Scholar 

  2. Y. Tanaka, T. Utaka, R. Kikuchi, T. Takeguchi, K. Sasaki, K. Eguchi, J. Catal. 215, 271 (2003)

    Article  CAS  Google Scholar 

  3. Y. Tanaka, T. Utaka, R. Kikuchi, K. Sasaki, K. Eguchi, Appl. Catal. A General 242, 287 (2003)

    Article  CAS  Google Scholar 

  4. Y. Tanaka, T. Takeguchi, R. Kikuchi, K. Eguchi, Appl. Catal. A General 279, 59 (2005)

    Article  CAS  Google Scholar 

  5. S. Natesakhawat, X. Wang, L. Zhang, U.S. Ozkan, J. Mol. Catal. A: Chem. 260, 82 (2006)

    Article  CAS  Google Scholar 

  6. A. Khan, P. Chen, P. Boolchand, P.G. Smirniotis, J. Catal. 253, 91 (2008)

    Article  CAS  Google Scholar 

  7. X. Dua, Z. Yuan, L. Cao, C. Zhang, S. Wang, Fuel Process. Technol. 89, 131 (2008)

    Article  Google Scholar 

  8. X. Xie, Y. Li, Z.-Q. Liu, M. Haruta, W. Shen, Nature 458, 746 (2009)

    Article  CAS  Google Scholar 

  9. J. Zhu, Q. Gao, Microporous Mesoporous Mater. 124, 144 (2009)

    Article  CAS  Google Scholar 

  10. D. Li, X. Liu, Q. Zhang, Y. Wang, H. Wan, Catal. Lett. 127, 377 (2009)

    Article  CAS  Google Scholar 

  11. Y. Sun, S.S. Hla, G.J. Duffy, A.J. Cousins, D. French, L.D. Morpeth, J.H. Edwards, D.G. Roberts, Catal. Commun. 12, 304 (2010)

    Article  CAS  Google Scholar 

  12. T.P. Maniecki, P. Mierczyński, W.K. Jóźwiak, Kinet. Catal. 51, 843 (2010)

    Article  CAS  Google Scholar 

  13. S. Boumaza, A. Auroux, S. Bennici, A. Boudjemaa, M. Trari, A. Bouguelia, R. Bouarab, React. Kinet. Mech. Catal. 100, 145 (2010)

    CAS  Google Scholar 

  14. G.K. Reddy, P.G. Smirniotis, Catal. Lett. 141, 27 (2011)

    Article  CAS  Google Scholar 

  15. S. Varghese, M.G. Cutrufello, E. Rombi, C. Cannas, R. Monaci, I. Ferino, Appl. Catal. A General 443–444, 161 (2012)

    Article  Google Scholar 

  16. T. Tabakova, V. Idakieva, G. Avgouropoulos, J. Papavasiliou, M. Manzoli, F. Boccuzzi, T. Ioannides, Appl. Catal. A General 451, 184 (2013)

    Article  CAS  Google Scholar 

  17. K. Sagata, N. Imazu, H. Yahiro, Catal. Today 201, 145 (2013)

    Article  CAS  Google Scholar 

  18. T. Tabakova, M. Manzoli, D. Paneva, F. Boccuzzi, V. Idakiev, I. Mitov, Appl. Catal. B Environ. 101, 266 (2011)

    Article  CAS  Google Scholar 

  19. C. Ratnasamy, J.P. Wagner, Catal. Rev. 51, 325 (2009)

    Article  CAS  Google Scholar 

  20. Y.T. Kim, E.D. Park, H.C. Lee, D. Lee, K.H. Lee, Appl. Catal. B Environ. 90, 45 (2009)

    Article  CAS  Google Scholar 

  21. H.-S. Roh, D.-W. Jeong, K.-S. Kim, I.-H. Eum, K. Koo, W. Yoon, Catal. Lett. 141, 95 (2011)

    Article  CAS  Google Scholar 

  22. R. Burch, Phys. Chem. Chem. Phys. 8, 5483 (2006)

    Article  CAS  Google Scholar 

  23. Q. Fu, H. Saltsburg, M. Flytzani-Stephanopoulos, Science 301, 935 (2003)

    Article  CAS  Google Scholar 

  24. J. Słoczyński, R. Grabowski, P. Olszewski, A. Kozłowska, J. Stoch, M. Lachowska, J. Skrzypek, Appl. Catal. A General 310, 127 (2006)

    Article  Google Scholar 

  25. J.M. Zalc, V. Sokolovskii, D.G. Löffler, J. Catal. 206, 169 (2002)

    Article  CAS  Google Scholar 

  26. J.R. Mellor, R.G. Copperthwaite, N.J. Coville, Appl. Catal. A General 164, 69 (1997)

    Article  CAS  Google Scholar 

  27. D. Gu, F. Schüth, Chem. Soc. Rev. 43, 313 (2014)

    Article  CAS  Google Scholar 

  28. D. Zhao, Q. Huo, J. Feng, B.F. Chmelka, G.D. Stucky, J. Am. Chem. Soc. 120, 6024 (1998)

    Article  CAS  Google Scholar 

  29. J.L.M. Lenglet, L. Terrier, P. Chartier, J.F. Koenig, P. Nkeng, G. Poillerat, J. Phys. IV France 3, 477 (1993)

    Article  CAS  Google Scholar 

  30. S. Li, H. Bi, B. Cui, F. Zhang, Y. Du, X. Jiang, C. Yang, Q. Yu, Y. Zhu, J. Appl. Phys. 95, 7420 (2004)

    Article  CAS  Google Scholar 

  31. C.-W. Tang, C.-B. Wang, S.-H. Chien, Thermochim. Acta 473, 68 (2008)

    Article  CAS  Google Scholar 

  32. B. Lefez, R. Souchet, K. Kartouni, M. Lenglet, Thin Solid Films 268, 45 (1995)

    Article  CAS  Google Scholar 

  33. F. Boccuzzi, S. Coluccia, G. Ghiotti, C. Morterra, A. Zecchina, J. Phys. Chem. 82, 1298 (1978)

    Article  CAS  Google Scholar 

  34. A. Rumplecker, F. Kleitz, E.-L. Salabas, F. Schüth, Chem. Mater. 19, 485 (2007)

    Article  CAS  Google Scholar 

  35. M.-F. Luo, Y.-J. Zhong, X.-X. Yuan, X.-M. Zheng, Appl. Catal. A General 162, 121 (1997)

    Article  CAS  Google Scholar 

  36. A.L. Boyce, S.R. Graville, P.A. Sermon, M.S.W. Vong, React. Kinet. Catal. Lett. 44, 1 (1991)

    Article  CAS  Google Scholar 

  37. R. Brown, M.E. Cooper, D.A. Whan, Appl. Catal. 3, 177 (1982)

    Article  CAS  Google Scholar 

  38. B.A. Sexton, A.E. Hughes, T.W. Turney, J. Catal. 97, 390 (1986)

    Article  CAS  Google Scholar 

  39. L. Xue, C. Zhang, H. He, Y. Teraoka, Appl. Catal. B Environ. 75, 167 (2007)

    Article  CAS  Google Scholar 

  40. G. Fierro, M. Lo Jacono, M. Inversi, R. Dragone, P. Porta, Top. Catal. 10, 39 (2000)

    Article  CAS  Google Scholar 

  41. C. Cannas, A. Musinu, D. Peddis, G. Piccaluga, J. Nanopart. Res. 6, 233 (2004)

    Article  Google Scholar 

  42. V.A. a O’Shea, N.N. Menéndez, J.D. Tornero, J.L.G. Fierro, Catal. Lett. 88, 123 (2003)

    Article  Google Scholar 

  43. Q. Yang, H. Choi, S.R. Al-Abed, D.D. Dionysiou, Appl. Catal. B Environ. 88, 462 (2009)

    Article  CAS  Google Scholar 

  44. D.L. Trimm, Appl. Catal. A General 296, 1 (2005)

    Article  CAS  Google Scholar 

  45. A.A. Gokhale, J.A. Dumesic, M. Mavrikakis, J. Am. Chem. Soc. 130, 1402 (2008)

    Article  CAS  Google Scholar 

  46. J.R.H. Ross, in Catalysis, ed. by G.C. Bond, G. Webb (The Royal Society of Chemistry, London, 1985), Vol. 7, p. 13

Download references

Aknowledgments

The authors gratefully acknowledge financial support from Regione Autonoma della Sardegna (L.R. 7/2007, Project CRP1_408).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Ferino.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2167 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Varghese, S., Cutrufello, M.G., Rombi, E. et al. Mesoporous hard-templated Me–Co [Me = Cu, Fe] spinel oxides for water gas shift reaction. J Porous Mater 21, 539–549 (2014). https://doi.org/10.1007/s10934-014-9801-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-014-9801-z

Keywords

Navigation