Skip to main content
Log in

Formation and characterization of nanoporous structures on surface of LPD-derived GeO2 ceramic film

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

This work represents an idea of forming nanoporous structures on surface of a LPD (liquid phase deposition)-derived GeO2 ceramic film by thermal reduction of GeO2 under hydrogen atmosphere. SEM, XRD and Raman analyses show that well-defined nanopores with size in range of 10–100 nm have been formed on surface of GeO2 film by annealing at 600 °C for 5–10 min. The pore formation process is furthered by structural defects which serve as active sites for the thermal reduction reaction. Fast phase transformation from hexagonal GeO2 to tetragonal GeO2 has occurred within the first 5 min of annealing. Green-yellow (2.32 eV) and violet (2.9 eV) photoluminescences originating from \( {\text{O}} {-} \mathop {\text{Ge}}\limits^{ \bullet \bullet } {-} {\text{O}} \) and ≡Ge–Ge≡ defects are observed in the film samples. The photoluminescence peak intensity decreases with increase of annealing time due to diminution of O/Ge ratio. The film annealed for 5 min exhibits a maximum green-yellow to violet PL peak ratio, which is related to generation of some new \( {\text{O}} {-} \mathop {\text{Ge}}\limits^{ \bullet \bullet } {-} {\text{O}} \) defects at the phase interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. P. Hidalgo, B. M′endez, J. Piqueras, Sn doped GeO2 nanowires with waveguiding behavior. Nanotechnology 19, 455705 (2008)

    Article  CAS  Google Scholar 

  2. X. Zou, B. Liu, Q. Li, Z. Li, B. Liu, W. Wu, Q. Zhao, Y. Sui, D. Li, B. Zou, T. Cui, G. Zou, H.-K. Mao, One-step synthesis, growth mechanism and photoluminescence properties of hollow GeO2 walnuts. CrystEngComm 13, 979–984 (2011)

    Article  CAS  Google Scholar 

  3. C.B. Jing, J.X. Hou, X.G. Xu, Y.H. Zhang, Facile liquid phase deposition of thick reflective GeO2 film for hollow waveguide delivery of CO2 laser radiation. Appl. Phys. A Mater. 90, 367–373 (2008)

    CAS  Google Scholar 

  4. X.Z. Qiu, L. Yu, L.S. Zhang, H. Liao, J.Q. Qin, J. Yang, J. Ouyang, Expression of MyoD gene in L6 myoblast cells induced by GeO2. Chin. J. Clin. Anat. 23(1), 14–16 (2005)

    Google Scholar 

  5. C.B. Jing, J.X. Hou, Y.H. Zhang, Fabrication of thick (>10 μm) GeO2 ceramic films by a facile LPD process. J. Am. Ceram. Soc. 90, 3646–3650 (2007)

    Article  CAS  Google Scholar 

  6. H. Lorenz, Q. Zhao, S. Turner, O.I. Lebedev, G.V. Tendeloo, B. Klozer, C. Rameshan, S. Penner, Preparation and structural characterization of SnO2 and GeO2 methanol steam reforming thin film model catalysts by (HR)TEM. Mater. Chem. Phys. 122, 623–629 (2010)

    Article  CAS  Google Scholar 

  7. Q.Y. Lu, F. Gao, Y.Q. Li, Y.M. Zhou, D.Y. Zhao, Synthesis of germanium oxide mesostructures with a new intermediate state [J]. Microporous Mesoporous Mater. 56(2), 219–225 (2002)

    Article  CAS  Google Scholar 

  8. T.C. Chang, S.T. Yan, C.H. Hsu, M.T. Tang, J.F. Lee, Y.H. Tai, P.T. Liu, S.M. Sze, A distributed charge storage with GeO2 nanodots. Appl. Phys. Lett. 84, 2581–2583 (2004)

    Article  CAS  Google Scholar 

  9. V.V. Atuchin, T.A. Gavrilova, S.A. Gromilov, V.G. Kostrovsky, L.D. Pokrovsky, I.B. Troitskaia, R.S. Vemuri, G.C. Franco, C.V. Ramana, Low-Temperature Chemical Synthesis and Microstructure Analysis of GeO2 Crystals with α-Quartz Structure. Cryst. Growth Des. 9, 1829–1832 (2009)

    Article  CAS  Google Scholar 

  10. M. Micoulaut, L. Cormier, G.S. Henderson, The structure of amorphous, crystalline and liquid GeO2 [J]. J. Phys.: Condens. Matter. 18, 753–784 (2006)

    Article  Google Scholar 

  11. C.B. Jing, J.X. Hou, Y.H. Zhang, Morphology controls of GeO2 particles precipitated by a facile acid induced decomposition of germanate ions in aqueous medium. J. Cryst. Growth 310, 391–396 (2008)

    Article  CAS  Google Scholar 

  12. C.V. Ramana, G.C. Franco, R.S. Vemuri, I.B. Troitskaia, S.A. Gromilov, V.V. Atuchin, Optical properties and thermal stability of germanium oxide (GeO2) nanocrystals with α-quartz structure. Mater. Sci. Eng. B 174, 279–284 (2010)

    Article  CAS  Google Scholar 

  13. H.P. Wu, J.F. Liu, M.Y. Ge, L. Niu, Y.W. Zeng, Y.W. Wang, G.L. Lv, L.N. Wang, G.Q. Zhang, J.Z. Jiang, Preparation of monodisperse GeO2 nanocubes in a reverse micelle system. Chem. Mater. 18, 1817–1820 (2006)

    Article  CAS  Google Scholar 

  14. Y. Chiu, M.H. Huang, Formation of hexabranched GeO2 nanoparticles via a reverse micelle system. J. Phys. Chem. C 113, 6056–6060 (2009)

    Article  CAS  Google Scholar 

  15. X. Chen, Q. Cai, J. Zhang, Z.J. Chen, W. Wang, Z.Y. Wu, Z.H. Wu, Synthesis and growth of germanium oxide nanoparticles in AOT reversed micelle. Mater. Lett. 61, 535–537 (2007)

    Article  CAS  Google Scholar 

  16. Z. Jiang, T. Xie, G.Z. Wang, X.Y. Yuan, C.H. Ye, W.P. Cai, G.W. Meng, G.H. Li, L.D. Zhang, GeO2 nanotubes and nanorods synthesized by vapor phase reactions. Mater. Lett. 599, 416–419 (2005)

    Article  Google Scholar 

  17. J.Q. Hu, Q. Li, X.M. Meng, C.S. Lee, S.T. Lee, Synthesis and nanostructuring of patterned wires of α-GeO2 by thermal oxidation. Adv. Mater. 14(19), 1396–1399 (2002)

    Article  CAS  Google Scholar 

  18. P. Viswanathamurthi, N. Bhattarai, H.Y. Kim, M.S. Khil, D.R. Lee, E.K. Suh, GeO2 fibers: preparation, morphology and photoluminescence property. J. Chem. Phys. 121(1), 441–445 (2004)

    Article  CAS  Google Scholar 

  19. L.Z. Pei, H.S. Zhao, W. Tan, Q.F. Zhang, Facile hydrothermal preparation and characterizations of single crystalline Ge dioxide nanowires. J. Appl. Phys. 105, 054313 (2009)

    Article  Google Scholar 

  20. W. Wu, X. Zou, Q. Li, B. Liu, B. Liu, R. Liu, D. Liu, Z. Li, W. Cui, Z. Liu, D. Li, T. Cui, G. Zou, Simple Synthesis and Luminescence Characteristics of PVP-Capped GeO2 Nanoparticles. J. Nanomaterials Volume 2011, Article ID 841701, 5 pages. doi:10.1155/2011/841701

  21. J.F. Scott, Phys. Rev. B 1, 3488–3493 (1970)

    Article  Google Scholar 

  22. M.I. Alonso, K. Winer, Phys. Rev. B 39, 10056–10062 (1989)

    Article  CAS  Google Scholar 

  23. C.B. Jing, W. Wang, T. Lin, C.Y. Cao and J.H. Chu, Synthesis, microstructure, and properties of Ge1−xCox diluted magnetic semiconductor films. Eur. Phys. J. Appl. Phys. 53, (2011). doi: 10.1051/epjap/2010100015

  24. M. Gallaghe, U. Osterberg, J. Appl. Phys. 74, 2771–2778 (1993)

    Article  Google Scholar 

  25. M. Madon, P. Gillet, C. Julien, D.G. Price, Phys. Chem. Miner. 18, 7–18 (1991)

    Article  CAS  Google Scholar 

  26. A.S. Zyubin, A.M. Mebel, S.H. Lin, J. Chem. Phys. 125, 064701 (2006)

    Article  CAS  Google Scholar 

  27. H.J. Fitting, T. Barfels, A.N. Trukhin, B. Schmidt, J. Non-Cryst, Solids 279, 51–59 (2001)

    CAS  Google Scholar 

  28. O.H. Johnson, Chem. Rev. 51, 431–469 (1952)

    Article  CAS  Google Scholar 

  29. N. Yoshida, M. Naknishi, K. Ikegami, S. Shimura, S. Kishimoto, J. Mater. Sci. Lett. 6, 149–150 (1987)

    Article  CAS  Google Scholar 

  30. M. Micoulaut, L. Cormier, G.S. Henderson, J. Phys. Condens. Matter. 18, 753–784 (2006)

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by National Natural Science foundation of China (50802046), National Basic Research Program of China (No. 2007CB924900), National Innovation Research Group foundation of China (No. 60221502), and Key Project of Shanghai Science and Technology Commission (No.07JC14018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengbin Jing.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jing, C., Zhang, C. & Chu, J. Formation and characterization of nanoporous structures on surface of LPD-derived GeO2 ceramic film. J Porous Mater 20, 359–365 (2013). https://doi.org/10.1007/s10934-012-9605-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-012-9605-y

Keywords

Navigation