Skip to main content
Log in

Tuning morphology of mesoporous titanium oxides through fluorinated surfactants-based systems

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Four different fluorinated surfactant-based systems were used as template for the synthesis of highly ordered TiO2 mesoporous materials with large-pore wormhole structures. The calcined materials exhibit large pore diameters (up to 5.9 nm), high surface areas (900–1,180 mg−1), pore volumes (0.90–1.25 cmg−1) and thick pore walls (4.6–7.7 nm) depending of the synthesis route. It is established that the self-aggregation behavior of fluorinated amphiphile systems can be manipulate and provides a rich phase behavior to obtain well-organized titania sieves with adjustable pore size and surface topography. By comparison to titania and silica sieves obtained by the same procedure, it can be established that there is a deep interaction between head groups of fluorinated surfactants and Ti(IV)(iPrO)4 showing that the inorganic precursor has a great influence on the properties of the final materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 1
Fig. 8
Scheme 2

Similar content being viewed by others

References

  1. M.E. Davis, Nature 417, 813 (2002)

    Article  CAS  Google Scholar 

  2. V. Idakiev, Z.Y. Yuan, T. Takakova, S.L. Su, Appl. Catal. A. Gen. 281, 149 (2005)

    Article  CAS  Google Scholar 

  3. O.K. Varghese, D. Gong, M. Paulose, K.G. Ong, E.C. Dickey, C.A. Grimes, Adv. Mater. 15, 624 (2003)

    Article  CAS  Google Scholar 

  4. M. Adachi, Y. Murata, I. Okada, S. Yoshikawa, J. Electrochem. Soc. 150, G488 (2003)

    Article  CAS  Google Scholar 

  5. D.M. Dabbs, I.A. Aksay, Annu. Rev. Phys. Chem. 51, 601 (2000)

    Article  CAS  Google Scholar 

  6. J.Y. Ying, AIChE J. 46, 1902 (2000)

    Article  CAS  Google Scholar 

  7. D. Zhao, J. Feng, Q. Huo, N. Melosh, G.H. Fredickson, B.F. Chmelka, G.D. Stucky, Science 279, 548 (1998)

    Article  CAS  Google Scholar 

  8. A. Firouzi, F. Atef, A.G. Oertli, G.D. Stucky, B.F. Chmelka, J. Am. Chem. Soc. 119, 3596 (1997)

    Article  CAS  Google Scholar 

  9. G.I. Soler-Ilia, E.L. Crepañdi, D. Grosso, C. Sanchez, Curr. Opin. Colloid Interface Sci. 8, 109 (2003)

    Article  Google Scholar 

  10. J.S. Beck, J.C. Vartulli, W.J. Roth, M.E. Leonowicz, C.T. Kresge, K.D. Schmitt, C.T.-W. Chu, D.H. Olson, E.W. Sheppard, S.B. Mc Cullen, J.B. Higgins, J.L. Schlenker, J. Am. Chem. Soc. 114, 10834 (1992)

    Article  CAS  Google Scholar 

  11. C.T. Kresge, M.E. Leonowicz, W.J. Roth, J.C. Vartulli, J.S. Beck, Nature 359, 710 (1992)

    Article  CAS  Google Scholar 

  12. F. Beari, M. Brand, P. Jenkner, R. Lehnert, H.J. Metternich, J. Monkiewicz, H.W. Siesler, J. Organomet. Chem. 625, 208 (2001)

    Article  CAS  Google Scholar 

  13. S. Che, Z. Llu, T. Ohsuna, K. Sakamoto, O. Terasaki, T. Tatsumi, Nature 429, 281 (2004)

    Article  CAS  Google Scholar 

  14. P. Messina, M.A. Morini, P.C. Schulz, Colloid Polym. Sci. 282, 1063 (2004)

    Article  CAS  Google Scholar 

  15. D. Zhao, S. Budhi, R. T. Koodali, Mesoporous Titania Dioxide, Nanoscale Materials in Chemistry: Environmental Applications, vol 1045, chap 6 (ACS Symposium Series, 2010), pp. 97–123

  16. K. Liu, M. Zhang, K. Shi, H. Fu, Mater. Lett. 59, 3308 (2005)

    Article  CAS  Google Scholar 

  17. X. Wang, J.C. Yu, C. Ho, Y. Hou, X. Fu, Langmuir 21, 2552 (2005)

    Article  CAS  Google Scholar 

  18. K. Sarkar, S.C. Laha, N.K. Mal, A. Bhaumik, J. Solid State Sci. 181, 2065 (2008)

    CAS  Google Scholar 

  19. T. Peng, A. Hasegawa, J. Qiu, K. Hirao, Chem. Mat. 15, 2011 (2003)

    Article  CAS  Google Scholar 

  20. H. Yoshitake, T. Sugihara, T. Tatsumi, Chem. Mat. 14, 1023 (2002)

    Article  CAS  Google Scholar 

  21. T. Hongo, A. Yamazaki, J. Mater. Sci. 45, 275 (2010)

    Article  CAS  Google Scholar 

  22. J.L. López-Fontán, A. González-Pérez, J. Costa, J.M. Ruso, G. Prieto, P.C. Schulz, F. Sarmiento, J. Colloid Interface Sci. 297, 10 (2006)

    Article  Google Scholar 

  23. J.L. López-Fontán, A. González-Pérez, J. Costa, J.M. Ruso, G. Prieto, P.C. Schulz, F. Sarmiento, J. Colloid Interface Sci. 294, 458 (2006)

    Google Scholar 

  24. E. Blanco, C. Rodríguez-Abreu, P. Schulz, J. M. Ruso, J. Colloid Interface Sci. 341, 261 (2010). and references therein

  25. E. Blanco, U. Olsson, J.M. Ruso, P.C. Schulz, G. Prieto, F. Sarmiento, J. Colloid Interface Sci. 331, 522 (2009)

    CAS  Google Scholar 

  26. J.L. Blin, N. Henzel, M.J. Stébé, J. Colloid Interface Sci. 302, 643 (2006)

    CAS  Google Scholar 

  27. M.P. Krafft, J.G. Riess, Biochimie 80, 489 (1998)

    Article  CAS  Google Scholar 

  28. H. Hoffmann, J. Wurtz, J. Mol. Liq. 72, 191 (1997)

    Article  CAS  Google Scholar 

  29. K. Wang, G. Orädd, M. Almgren, T. Asakawa, B. Bergenstähl, Langmuir 16, 1042 (2000)

    Article  CAS  Google Scholar 

  30. J.L. Blin, P. Lesieur, M.J. Stébé, Langmuir 20, 491 (2004)

    Article  CAS  Google Scholar 

  31. J.L. Blin, M.J. Stébé, J. Phys. Chem. B. 108, 11399 (2004)

    Article  CAS  Google Scholar 

  32. S.E. Rankin, B. Tan, H.-J. Lehmler, K.P. Hindman, B.L. Knutson, Micropor. Mesopor. Mater. 73, 197 (2004)

    Article  CAS  Google Scholar 

  33. B. Tan, H.-J. Lehmler, S.M. Vyas, B.L. Knutson, S.E. Rankin, Chem. Mater. 17, 916 (2005)

    Article  CAS  Google Scholar 

  34. X. Meng, Y. Di, L. Zhao, D. Jiang, S. Li, F.-S. Xiao, Chem. Mater. 16, 5518 (2004)

    Article  CAS  Google Scholar 

  35. Y. Di, X. Meng, S. Li, F.-S. Xiao, Micropor. Mesopor Mater. 82, 121 (2005)

    Article  CAS  Google Scholar 

  36. M. Groenewolt, M. Antonieti, S. Polarz, Langmuir 20, 7811 (2004)

    Article  CAS  Google Scholar 

  37. B. Tan, H.-J. Lehmer, S.M. Vyas, B.L. Knutson, S.E. Rankin, Nanotechnology 16, S502 (2005)

    Article  Google Scholar 

  38. Y. Han, D. Zhao, J. Song, X. Yang, N. Li, Y. Di, C. Li, S. Wu, X. Xu, X. Meng, K. Lin, F.S. Xiao, Angew. Chem. Int. Ed. 44, 288 (2005)

    Article  CAS  Google Scholar 

  39. I. Park, T.J. Pinnavaia, Micropor. Mesopor. Mater. 118, 239 (2009)

    Article  CAS  Google Scholar 

  40. B.C. Lippens, B.J. Linsen, J.H. Boer, J. Catal. 3, 32 (1964)

    Article  CAS  Google Scholar 

  41. K.S.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pierotti, J. Rouquérol, T. Semieniewska, Pure Appl. Chem. 57, 603 (1985)

    Article  CAS  Google Scholar 

  42. E.P. Barret, L.G. Joyner, P.P. Halenda, J. Am. Chem. Soc. 73, 373 (1951)

    Article  Google Scholar 

  43. P. Pendleton, A. Badalyan, Adsorption 11(1), 61 (2005)

    Article  Google Scholar 

  44. J.C. Groen, L.A.A. Peffer, J. Pérez-Ramírez, Micropor. Mesopor. Mater. 60, 1 (2003)

    Article  CAS  Google Scholar 

  45. M. Kruk, M. Jaroniec, Chem. Mater. 13, 3169 (2001)

    Article  CAS  Google Scholar 

  46. L.D. Gelb, K.E. Gubbins, Langmuir 15, 305 (1999)

    Article  CAS  Google Scholar 

  47. A.V. Neimark, P.I. Ravikovitch, A. Vishnyakov, J. Phys. Condens. Matter 15, 347 (2003)

    Article  CAS  Google Scholar 

  48. J.C. Groen, L.A.A. Peffer, J. Pérez-Ramírez, Micropor. Mesopor. Mater. 60, 1 (2003)

    Article  CAS  Google Scholar 

  49. P.V. Messina, M.A. Morini, M.B. Sierra, P.C. Schulz, J. Colloid Interface Sci. 300, 270 (2006) (and references therein)

    Article  CAS  Google Scholar 

  50. A.B. Jarzebski, J. Lorenc, L. Pajak, Langmuir 13, 1280 (1997)

    Article  CAS  Google Scholar 

  51. E. Prouzet, C. Boissière, S.S. Kim, T.J. Pinnavaia, Micropor. Mesopor. Mater. 119, 9 (2009)

    Article  CAS  Google Scholar 

  52. G. Ferey, Chem. Soc. Rev. 37, 191 (2008)

    Article  CAS  Google Scholar 

  53. R.A. Spurr, H. Myers, Anal. Chem. 29, 760 (1957)

    Article  CAS  Google Scholar 

  54. D.P. Bossev, M. Matsumoto, M. Nakahara, J. Phys. Chem. B. 103, 8251 (1999)

    Article  CAS  Google Scholar 

  55. J. N. Israelachvili, Intermolecular and Surfaces Forces, chap 17 (Academic Press Limited, London UK, 1992), pp. 380–382

  56. N. Vlachy, M. Drechsler, J.M. Verbavatz, D. Touraud, W. Kunz, Colloid Interface Sci. 319, 542 (2008)

    Article  CAS  Google Scholar 

  57. R.L. Kay, D.F. Evans, J. Phys. Chem. 70, 2325 (1966)

    Article  CAS  Google Scholar 

  58. M. Broniatowski, P. Dynarowicz-Latka, Adv. Colloid Interface Sci. 138, 63 (2008)

    Article  CAS  Google Scholar 

  59. J.-L. Blin, A. Léonard, Z.-Y. Yuan, L. Gigot, A. Vantomme, A.K. Cheetham, B.-L. Su, Angew. Chem. Int. Ed. 42, 2872 (2003)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge Universidad Nacional del Sur (PGI 24/ZQ07); Concejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina (CONICET, PIP-11220100100072); Education Audiovisual Culture Executive Agency, European Commission, EMUNDUS18 and Xunta de Galicia for their financial support (Project No. PXI20615PN). PM is an adjunct researcher of (CONICET).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paula V. Messina.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ruso, J.M., Blanco, E. & Messina, P.V. Tuning morphology of mesoporous titanium oxides through fluorinated surfactants-based systems. J Porous Mater 20, 95–105 (2013). https://doi.org/10.1007/s10934-012-9578-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-012-9578-x

Keywords

Navigation