Skip to main content
Log in

Physical and chemical modified forms of palm shell: preparation, characterization and preliminary assessment as adsorbents

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

A series of adsorbents were obtained from palm shell (Borassus flabellifer) powder (PSP) which is an agro-waste. PSP was carbonized using sulphuric acid (APSP). APSP was subjected to the following modification procedures: activation to different temperatures (3AAC, 6AAC, 7AAC and 9AAC); activation with steam and persulfate (SAPSP and PAPSP) at 140 °C. Further the effect of modification of PSP, APSP, SAPSP and PAPSP using formaldehyde (MPSP, MAPSP, MSAPSP and MPAPSP) was also investigated. The materials were characterized using SEM, FTIR, TGA and XRD. N2 adsorption isotherms, DR equation and BJH methods were used to characterize the pore structure of the prepared carbons. The iodine value for APSP, SAPSP and PAPSP were found to be 342.5, 199.8, 299.7 mg/g respectively. They were also found to have large pores as well as chelating functional groups indicating their potential adsorption capacity. The carbon 9AAC was found to have high BET surface area of 834 m2/g and a pore volume of 0.4474 cm3/g with predominant micro-pores. Selectivity coefficients for different mixtures containing mercury, copper, zinc and cadmium have been determined for PSP, MPSP, APSP, SAPSP, PAPSP and 9AAC. Though PSP, APSP, SAPSP, PAPSP and MPSP did not have appreciable surface area, they showed encouraging results for adsorption of heavy metals indicating the potential use of palm shell as an economic precursor in the activated carbon preparation process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. F.R. Reinoso, M.M. Sabio, Carbon 30, 1111–1118 (1992)

    Article  Google Scholar 

  2. A.A. El-Hendawy, Carbon 41, 713–722 (2003)

    Article  CAS  Google Scholar 

  3. R.M. Suzuki, A.D. Andrade, J.C. Sousa, M.C. Rollemberg, Biores. Technol. 98, 1985–1991 (2007)

    Article  CAS  Google Scholar 

  4. A.A. El-Hendawy, A.J. Alexander, R.J. Andrews, G. Forrest, J. Anal. Appl. Pyrolysis 82, 272–278 (2008)

    Article  CAS  Google Scholar 

  5. F. Rodriguez-Reinoso, J. Lahaye, P. Ehrburger (eds.), Fundamental Issue in Control of Carbon Gasification Reactivity (Kluwer, Dordrecht, 1991), pp. 533–571

    Google Scholar 

  6. K. Tomkow, A. Jankowska, F. Chechowsk, T. Siemieniewska, Fuel 56, 266–270 (1977)

    Article  CAS  Google Scholar 

  7. C.T. Hsieh, H. Teng, Carbon 38, 863–869 (2000)

    Article  CAS  Google Scholar 

  8. I. Martin-Gullon, R. Font, Water Res. 35, 516–520 (2001)

    Article  CAS  Google Scholar 

  9. Q. Li, V.L. Snoeyink, B.J. Marinas, C. Campos, Water Res. 37, 773–784 (2003)

    Article  CAS  Google Scholar 

  10. K. Nakagawa, A. Namba, S.R. Mukai, H. Tamon, P. Ariyadejwanich, Water Res. 38, 1791–1798 (2004)

    Article  CAS  Google Scholar 

  11. Z. Yue, J. Economy, K. Rajagopalan, G. Bordson, M. Piwoni, L. Ding, V.L. Snoeyink, B.J. Marinas, J. Mater. Chem. 16, 3375–3380 (2006)

    Article  CAS  Google Scholar 

  12. S. Han, K. Sohn, T. Hyeon, Chem. Mater. 12, 3337–3341 (2000)

    Article  CAS  Google Scholar 

  13. H. Tamai, T. Kakii, Y. Hirota, T. Kumamoto, H. Yasuda, Chem. Mater. 8, 454–462 (1996)

    Article  CAS  Google Scholar 

  14. A. Oya, S. Yoshida, J. Alcaniz-Monge, A. Linares-Solano, Carbon 33, 1085–1090 (1995)

    Article  CAS  Google Scholar 

  15. T. Kyotani, T. Nagai, S. Inoue, A. Tomita, Chem. Mater. 9, 609–615 (1997)

    Article  CAS  Google Scholar 

  16. S. Han, T. Hyeon, Chem. Commun. 19, 1955–1956 (1999)

    Article  Google Scholar 

  17. Z. Li, M. Jaroniec, J. Am. Chem. Soc. 123, 9208–9209 (2001)

    Article  CAS  Google Scholar 

  18. L. Lee, S. Yoon, S.M. Oh, C. Shin, T. Hyeon, Adv. Mater. 12, 359–362 (2000)

    Article  CAS  Google Scholar 

  19. T.A. Kurniawan, G.Y.S. Chan, W. Lo, S. Babel, Sci. Total Environ. 366, 409–426 (2006)

    Article  CAS  Google Scholar 

  20. D. Mohan, K.P. Singh, Water Res. 36, 2304–2318 (2002)

    Article  CAS  Google Scholar 

  21. M. Kobya, E. Demirbas, E. Senturk, M. Ince, Bioresour. Technol. 96, 1518–1521 (2005)

    Article  CAS  Google Scholar 

  22. A. Demirbas, J. Hazard. Mater. 157, 220–229 (2008)

    Article  CAS  Google Scholar 

  23. C.K. Singh, J.N. Sahu, K.K. Mahalik, C.R. Mohanty, B.R. Mohan, B.C. Meikap, J. Hazard. Mater. 153, 221–228 (2008)

    Article  CAS  Google Scholar 

  24. J. Kim, M. Sohn, D. Kim, S. Sohn, Y. Kwon, J. Hazard. Mater. 85, 301–315 (2001)

    Article  CAS  Google Scholar 

  25. H. Demiral, I. Demiral, F. Tümsek, B. Karabacakoglu, Chem. Eng. J. 144, 188–196 (2008)

    Article  CAS  Google Scholar 

  26. K. Kadirvelu, M. Kavipriya, C. Karthika, M. Radhika, N. Vennilamani, S. Pattabhi, Bioresour. Technol. 87, 129–132 (2003)

    Article  CAS  Google Scholar 

  27. N.A. Khan, S. Ibrahim, P. Subramaniam, Malays. J. Sci. 23, 43–51 (2004)

    CAS  Google Scholar 

  28. G. Sreelatha, S. Kushwaha, V.J. Rao, P.P. Sudhakar, Ind. Eng. Chem. Res. 49, 8106–8113 (2010)

    Article  CAS  Google Scholar 

  29. S. Kushwaha, G. Sreelatha, P. Padmaja, J. Chem. Eng. Data. doi:10.1021/je1013334

  30. ASTM, Standard Test Method for Determination of Iodine Number of Activated Carbon (ASTM Committee on Standards, ASTM, Philadelphia, 2006), pp. 4607–4694

    Google Scholar 

  31. A. Aziz, M.S. Ouali, E.H. Elandaloussi, J. Hazard. Mater. 163, 441–447 (2009)

    Article  CAS  Google Scholar 

  32. P. Galiatsatou, M. Metaxas, V. Kasselouri-Rigopoulou, J. Hazard. Mater. B91, 187–203 (2002)

    Article  Google Scholar 

  33. R. Baccar, J. Bouzid, M. Feki, A. Montiel, J. Hazard. Mater. 162, 1522–1529 (2009)

    Article  CAS  Google Scholar 

  34. P.R.F. Campos, M.Sc. Dissertation, Departamento de Engenharia Quimica, UEM, 1996, pp. 1–95

  35. C. Naizhen, H. Darmstadt, R. Christian, Energy Fuels 15, 1263–1269 (2001)

    Article  Google Scholar 

  36. K. Gergova, N. Petrov, V. Minkova, J. Chem. Technol. Biotechnol. 56, 77–82 (1993)

    Article  CAS  Google Scholar 

  37. P.A. Bazuła, A.H. Lu, J.J. Nitz, F. Schuth, Microporous Mesoporous Mater. 108, 266–275 (2008)

    Article  Google Scholar 

  38. K. Gergova, N. Petrov, S. Eser, Carbon 32, 693–702 (1994)

    Article  CAS  Google Scholar 

  39. L. Krisztina, B. Attila, G.N. Lajos, Carbon 38, 1965–1976 (2000)

    Article  Google Scholar 

  40. J.P. Fraissard, Physical Adsorption: Experiment, Theory, and Applications, NATO ASI Series (Kluwer, Dordrecht, 1996), pp. 9–17

  41. F.R. Reinoso, A.L. Solano, in Chemistry and Physics of Carbon, vol. 21, ed. by P.A. Thrower (Marcel Dekker, New York, 1989), pp. 1–146

    Google Scholar 

  42. S.J. Gregg, K.S.W. Singh, Adsorption Surface Area and Porosity (Academic Press, New York, 1982), pp. 303–305

    Google Scholar 

  43. T. Ohba, K. Kaneko, Langmuir 17, 3666–3670 (2001)

    Article  CAS  Google Scholar 

  44. M.J. Remy, G. Poncelet, J. Phys. Chem. 99, 773–779 (1995)

    Article  CAS  Google Scholar 

  45. D. Adinata, M.A.W.D. Wan, M.K. Aroua, Biores. Technol. 98, 145–149 (2007)

    Article  CAS  Google Scholar 

  46. S. Ismadji, S.K. Bhatia, Langmuir 16, 9303–9313 (2000)

    Article  CAS  Google Scholar 

  47. S. Ismadji, S.K. Bhatia, Langmuir 17, 1488–1498 (2001)

    Article  CAS  Google Scholar 

  48. P.T. Williams, A.R. Reed, J. Anal. Appl. Pyrolysis 70, 563–577 (2003)

    Article  CAS  Google Scholar 

  49. F. Stoeckli, A. Guillot, A.M. Slasli, D. Hugi-Cleary, Carbon 40, 211–215 (2002)

    Article  CAS  Google Scholar 

  50. M. Koyama, W. Helbert, T. Imai, J. Sugiyama, B. Henrissat, Proc. Natl. Acad. Sci. USA 94, 9091–9095 (1997)

    Article  CAS  Google Scholar 

  51. K. Marco, S.N. Peter, G.J. Mark, K. Markus, Environ. Sci. Technol. 44, 1247–1253 (2010)

    Article  Google Scholar 

  52. W. Huang, H. Zhang, Y. Huang, W. Wang, S. Wei, Carbon 49, 838–843 (2011)

    Article  CAS  Google Scholar 

  53. A.K. Kercher, D.C. Nagle, Carbon 41, 15–27 (2003)

    Article  CAS  Google Scholar 

  54. O. Paris, C. Zollfrank, G.A. Zickler, Carbon 43, 53–67 (2005)

    Article  CAS  Google Scholar 

  55. B.J. Meldrum, C.H. Rochester, J. Chem. Soc. Faraday Trans. 86, 1881–1884 (1990)

    Article  CAS  Google Scholar 

  56. B.J. Meldrum, C.H. Rochester, J. Chem. Soc. Faraday Trans. 86, 861–865 (1990)

    Article  Google Scholar 

  57. G. Socrates, Infrared Characteristic Group Frequencies, 2nd edn. (Wiley, Chichester, 1994), pp. 50–94

    Google Scholar 

  58. P.E. Fanning, M.A. Vannice, Carbon 31, 721–730 (1993)

    Article  CAS  Google Scholar 

  59. B.J. Meldrum, C.H. Rochester, J. Chem. Soc. Faraday Trans. 86, 2997–3002 (1990)

    Article  CAS  Google Scholar 

  60. B.J. Meldrum, C.H. Rochester, J. Chem. Soc. Faraday Trans. 86, 3647–3652 (1990)

    Article  CAS  Google Scholar 

  61. M. Nakahara, S. Asai, Y. Sanada, T. Ueda, J. Mater. Sci. 30, 5667–5671 (1995)

    Article  CAS  Google Scholar 

  62. M. Nakahara, Y. Sanada, J. Mater. Sci. 30, 4363–4365 (1995)

    Article  CAS  Google Scholar 

  63. J. Zawadzki, in Chemistry and Physics of Carbon, vol. 21, ed. by P.A. Thrower (Marcel Dekker, New York, 1989), pp. 147–380

    Google Scholar 

  64. L. Dupont, E. Guillon, Environ. Sci. Technol. 37, 4235–4241 (2003)

    Article  CAS  Google Scholar 

  65. S. Biniak, G. Szymanski, J. Siedlewski, A. Swiatkowski, Carbon 35, 1799–1810 (1997)

    Article  CAS  Google Scholar 

  66. F. Stoeckli, M.V. Lopez-Ramon, D. Hugi-Cleary, A. Guillot, Carbon 39, 1115–1116 (2001)

    Article  CAS  Google Scholar 

  67. A.R. Khan, I.R. Al-Waheab, A. Al-Haddad, Environ. Technol. 17, 13–23 (1996)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has been funded by the Board of research in Nuclear Sciences, INDIA. The authors also thank Dr. P. K. Mehta, Department of Physics, for the XRD analysis and Dr. V. J. Rao, Department of Metallurgy and Material Science, for TGA and SEM analysis, The M. S. University of Baroda and Head Department of Chemistry, The M. S. University of Baroda, for Laboratory facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Padmaja.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1,136 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kushwaha, S., Sreelatha, G. & Padmaja, P. Physical and chemical modified forms of palm shell: preparation, characterization and preliminary assessment as adsorbents. J Porous Mater 20, 21–36 (2013). https://doi.org/10.1007/s10934-012-9571-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-012-9571-4

Keywords

Navigation