Skip to main content

Advertisement

Log in

Response of Sandy Lake in Schirmacher Oasis, East Antarctica to the glacial-interglacial climate shift

  • Original paper
  • Published:
Journal of Paleolimnology Aims and scope Submit manuscript

Abstract

Freshwater lakes in Antarctica fluctuate from ice-free state (during austral summer) to ice-cover state (during austral winter). Hence the lakes respond instantly to the seasonal climate of the region. The Antarctic seasons respond sharply to the glacial and interglacial climates and these signatures are archived in the lake sediments. A sediment core from Sandy Lake, a periglacial lake located in Schirmacher Oasis of East Antarctica records distinct changes in grain-size, C, N, C/N ratios (atomic), δ13COM and δ15NOM contents during the last 36 ky. The contents of the sedimentary organic matter (OM) proxies (Corg ~ 0.3 ± 0.2%, C/N ratios ~9 ± 5 and δ13COM ~−18 ± 6‰) indicate that the OM in this lake sediment is a product of mixing of terrestrial and lacustrine biomass. Distinctly lower contents of Corg (~0.2%) and sand (~50%), low C/N ratios (~8) and depleted δ13COM (~−20‰) during the Last Glacial Maximum (LGM: 32–17 ky BP based on Vostok Temperatures) suggest greater internal (autochthonous) provenance of organic matter and limited terrestrial (allochthonous) inputs probably due to long and intense winters in the Antarctic. Such intense winters might have resulted the lake surface to be ice-covered for most part of the year when the temperatures remained consistently colder than the Holocene temperatures. The denitrification within the lake evident by enriched δ15NOM (>10‰) during Antarctic LGM might have resulted from oxygen-limitation within the lake environment caused by insulated lake surface. The gradual increases in δ13COM, C/N and sand content starting at ~11 ky BP and attaining high values (~−11‰, ~10 and ~80% respectively) at ~6 ky BP together suggest a subtle change in the balance of sources of organic matter between algal and macrophyte/bryophyte nearly 8–9 ky later to the beginning of the deglaciation. Thus the seasonal opening-up of the Sandy Lake similar to the modern pattern started with the establishment of the optimum temperature conditions (i.e., 0 °C anomaly) in the Antarctic, prior to which the lake environment might have remained mostly insulated or closed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adrian R, O’Reilly CM, Zagarese H, Baines SB, Hessen DO, Keller W, Livingstone DM, Sommaruga R, Straile D, Van Donk E, Weyhenmeyer GA, Winder M (2009) Lakes as sentinels of climate change. Limnol Oceanogr 54:2283–2297

    Article  Google Scholar 

  • Benn DI, Evans EJA (1998) Glaciers and glaciation, DI BENN and DJA EVANS, Publisher Arnold, London 1998 (734 pp) 50.00 (hardback) ISBN 0-340-65303-5 24.99 (paperback) ISBN 0-340-58431-0. doi: 10.1002/(SICI)1099-1417(199912)14:7<721::AID-JQS451>3.0.CO;2-Q. J Quat Sci 14 721

  • Berg S, Wagner B, White D, Cremer H, Bennike O, Melles M (2009) Late Pleistocene glaciation history of Rauer Group, East Antarctica. Antarct Sci 21:299–300

    Article  Google Scholar 

  • Bormann P, Fritzsche D (1995) The Schirmacher Oasis, Queen Maud Land, East Antarctica, and its suroundings, Petermans Geographische Mitteilungen: Ergänzungsheft; Nr 289. Jusus Perthes Verlag Gotha

  • Clarke PU, Dyke AS, Shakun JD, Carlson AE, Clark J, Wohlfarth B, Mitrovica J, Hostetler SW, McCabe AM (2009) The last glacial maximum. Science 325:710–714

    Article  Google Scholar 

  • Cline JD, Kaplan IR (1975) Isotopic fractionation of dissolved nitrate during denitrification Eastern Tropical North Pacific Ocean. Mar Chem 3:271–299

    Article  Google Scholar 

  • Craig HT, Wharton RA Jr, McKay CP (1992) Oxygen supersaturation in an ice-covered Antarctic lake: physical versus biological contributions. Science 255:318–321

    Article  Google Scholar 

  • de Mora SJ, Whitehead RF, Gregory M (1994) The chemical composition of glacial meltwater ponds on the McMurdo Ice shelf, Antarctica. Antarc Sci 6:17–27

    Article  Google Scholar 

  • Deines P (1980) The isotopic composition of reduced organic carbon. In: Fritz P, Fontes JC (eds) Handbook of environmental isotope geo-chemistry. Elsevier, Amsterdam, pp 330–350

    Google Scholar 

  • Doran PT, McKay CP, Clow GD, Dana GL, Fountain AG, Nylen T, Lyons WB (2002) Valley floor climate observations from the McMurdo Dry Valleys, Antarctica, 1986–2000. J Geophys Res 107:4772

    Article  Google Scholar 

  • EPICA Community Members (2006) One to one coupling of glacial climate variability in Greenland and Antarctica. Nature 444:195–198

    Article  Google Scholar 

  • Farquhar GD, Ehleringer JR, Hubick KT (1989) Carbon isotope discrimination and photosynthesis. Annu Rev Plant Physiol 40:503–537

    Article  Google Scholar 

  • Folk RL (1980) Petrology of sedimentary rocks. Hemphill, Austin, p 187

    Google Scholar 

  • Fry B, Sherr E (1984) δ13C measurements as indicators of carbon flow in marine and freshwater ecosystems. Contrib Mar Sci 27:1347

    Google Scholar 

  • Galy V, Bouchez J, France-Lanord C (2007) Determination of total organic carbon content and δ13C in carbonate rich detrital sediments. Geostand Geoanal Res 31:199–207

    Article  Google Scholar 

  • Geological Survey of India (2006) Geomorphological map of Schirmacher Oasis, East Antarctica. Director General, Geological Survey of India, Government of India, New Delhi

    Google Scholar 

  • Gingele F, Kuhn G, Maus B, Melles M, Schone T (1997) Holocene retreat from the Lazarev Sea shelf, East Antarctica. Cont Shelf Res 17:137–163

    Article  Google Scholar 

  • Håkanson L, Jansson M (1985) Principles of Lake Sedimentology (Caspers, H. 1985), 320 pp. Berlin–New York: Springer-Verlag 1983. ISBN 3–540 (Berlin) 0–387 (New York)–12645–7. DM 98. Int Rev Hydrobiol 70:431

  • Hall B (2003) An overview of late Pleistocene glaciation in the South Shetland Islands. Antar Res S 79:103–113

    Article  Google Scholar 

  • Harwart S, Hagedorn B, Melles M, Wand U (1999) Lithological and biochemical properties in sediments of Lama Lake as indicators for the late Pleistocene and Holocene ecosystem development of the southern Taymyr Peninsula, Central Siberia. Boreas 28:167–180

    Article  Google Scholar 

  • Hendy C, Sadler A, Denton G, Hall B (2000) Proglacial lake-ice conveyors: a new mechanism for the deposition of drift in polar environments. Geogr Ann A 82A:249–270

    Article  Google Scholar 

  • Hermichen WD, Kowski P, Wand U (1985) Lake Untersee, a first isotope study of the largest freshwater lake in the interior of East Antarctica. Nature 315:131–133

    Article  Google Scholar 

  • Heywood RB (1972) Antarctic limnology: a review. Brit Antarct Surv B 29:35–65

    Google Scholar 

  • Hodgson DA, Verleyen E, Sabbe K, Squier AH, Keely BJ, Leng MJ, Saunders KM, Vyverman W (2005) Late Quaternary climate-driven environmental change in the Larsemann Hills, East Antarctica, multi-proxy evidence from a lake sediment core. Quat Res 64:83–99

    Article  Google Scholar 

  • Hodgson DA, Roberts D, McMinn A, Verleyen E, Terry B, Corbett C, Vyverman W (2006) Recent rapid salinity rise in three east Antarctic Lakes. J Paleolimnol 36:385–406

    Article  Google Scholar 

  • Hodgson DA, Roberts SJ, Bentley MJ, Carmichael EL, Smith JA, Verleyen E, Vyverman W, Geissler P, Leng MJ, Sanderson DCW (2009) Exploring former subglacial Hodgson Lake, Antarctica Paper II: palaeolimnology. Quat Sci Rev 28:2310–2325

    Article  Google Scholar 

  • Ingole B (2008) Characteristics of Macrobenthic Assemblage from sub-littoral sediment off the Lazarev Sea, East Antarctica. Indian J Mar Sci 37:439–445

    Google Scholar 

  • Jia G, Li Z (2011) Easterly denitrification signal and nitrogen fixation feedback documented in the western Pacific sediments. Geophys Res Lett 38:L24605. doi:10.1029/2011GL050021

    Article  Google Scholar 

  • Krause WE, Krbetschek MR, Stolz W (1997) Dating of Quaternary lake sediments from the Schirmacher Oasis (East Antarctica) by Infra-red stimulated luminescence (IRSL) detected at the wavelength of 560 NM. Quat Sci Rev (Quat Geochron) 16:387–392

    Article  Google Scholar 

  • Lal RP (2004) Bryophytes of Schirmacher Oasis in Antarctica. Technical Publication No. 17. In: Nineteenth Indian expedition to Antarctica, scientific report, 2004. Department of ocean development, pp 165–171

  • Lal RP (2006) A short period climatology of Maitri: Schirmacher Oasis, East Antarctica. Mausam 57:684–687

    Google Scholar 

  • Lamb AL, Wilson GP, Leng MJ (2006) A review of coastal palaeoclimate and relative sea-level reconstructions using δ13C and C/N ratios in organic material. Earth Sci Rev 75:29–57

    Article  Google Scholar 

  • Leng MJ, Marshall JD (2004) Palaeoclimate interpretation of stable isotope data from lake sediment archives. Quat Sci Rev 23:811–831

    Article  Google Scholar 

  • Lisiecki LE, Raymo ME (2005) A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20:PA1003. doi:10.1029/2004PA001071

    Google Scholar 

  • Lu Y, Meyers PA, Eadie BJ, Robbins JA (2010) Carbon cycling in Lake Erie during cultural eutrophication over the last century inferred from the stable carbon isotope composition of sediments. J Paleolimnol 43:261–272

    Article  Google Scholar 

  • Mahesh BS, Warrier AK, Mohan Rahul, Tiwari M, Babu A, Chandran A, Asthana R, Ravindra R (2015) Response of Long Lake sediments to Antarctic climate: a perspective gained from sedimentary organic geochemistry and particle size analysis. Polar Sci 9:359–367

    Article  Google Scholar 

  • Martin EA, Miller RJ (1982) A simple, diver-operated coring device for collecting undisturbed shallow cores. J Sediment Petrol 52:641–642

    Article  Google Scholar 

  • Matsumoto GI, Komori K, Enomoto A, Imura S, Takemura T, Ohyama Y, Kanda H (2006) Environmental changes in Syowa Station area of Antarctica during the last 2300 years inferred from organic components in lake sediment cores. Polar Biosci 19:52–61

    Google Scholar 

  • Matsumoto GI, Honda E, Tani Y, Seto K, Watanabe T, Ohtani S, Nakamura T, Imura S (2013) Holocene paleoenvironmental studies in the Soya Kaigan of Antarctica viewed from Lake Oyako-ike sediment core. Int J Hum Cult Stud 2013:189–197

    Article  Google Scholar 

  • Matsumoto G, Honda E, Seto K, Tani Y, Watanabe T, Ohtani S, Kashima K, Nakamura T, Imura S (2014) Holocene paleolimnological changes of Lake Oyako-ike in the Soya Kaigan of East Antarctica. Inland Waters 4:105–112

    Article  Google Scholar 

  • McCormac FG, Hogg AG, Blackwell PG, Buck CE, Higham TFG, Reimer PJ (2004) SHcal04 southern hemisphere calibration, 0–11.0 cal ky BP. Radiocarbon 46:1087–1092

    Article  Google Scholar 

  • Meyers PA (1994) Preservation of elemental and isotopic source identification of sedimentary organic matter. Chem Geol 114:289–302

    Article  Google Scholar 

  • Meyers PA (1997) Organic geochemical proxies of paleoceanographic, paleolimnologic, and paleoclimatic processes. Org Geochem 27:213–250

    Article  Google Scholar 

  • Meyers PA (2003) Applications of organic geochemistry to paleolimnological reconstructions: a summary of examples from the Laurentian Great Lakes. Org Geochem 34:261–289

    Article  Google Scholar 

  • Meyers PA, Lallier-Vergés E (1999) Lacustrine sedimentary organic matter records of Late Quatemary paleoclimates. J Paleolimnol 21:345–372

    Article  Google Scholar 

  • Meyers PA, Teranes JL (2001) Sediment organic matter. In: Last WM, Smol JP (eds) Tracking environmental changes using lake sediments-volume II: physical and chemical techniques. Kluwer, Dordrecht, pp 239–269

    Google Scholar 

  • Nedell SS, Andersen DW, Squyres SW, Love FG (1987) Sedimentation in ice-covered Lake Hoare, Antarctica. Sedimentology 34:1093–1106

    Article  Google Scholar 

  • Ostle NJ, Bol R, Petzke KJ, Jarvis SC (1999) Compound specific δ15N‰ values: amino acids in grassland and arable soils. Soil Biol Biochem 31:1751–1755

    Article  Google Scholar 

  • Palmisano AC, Simmons GM Jr (1987) Spectral downwelling irradiance in an Antarctic lake. Polar Biol 7:145–151

    Article  Google Scholar 

  • Peters KE, Sweeney RE, Kaplan IR (1978) Correlation of carbon and nitrogen stable isotopes in sedimentary organic matter. Limnol Oceanogr 23:598–604

    Article  Google Scholar 

  • Petit JR, Mourner L, Jouzel J, Korotkevich YS, Kotlyakov VI (1990) Palaeoclimatological and chronological implications of the Vostok core dust record. Nature 343:56–58

    Article  Google Scholar 

  • Petit JR, Jouzel J, Raynaud D, Barkov NI, Barnola JM, Basile I, Bender M, Chappellaz J, Davis M, Delaygue G, Delmotte M, Kotlyakov VM, Legrand M, Lipenkov VY, Lorius C, Pepin L, Ritz C, Saltzman E, Stievenard M (1999) Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399:429–436

    Article  Google Scholar 

  • Phartiyal E (2014) Holocene paleoclimatic variation in the Schirmacher Oasis, East Antarctica: a mineral magnetic approach. Polar Sci 8:357–369

    Article  Google Scholar 

  • Phartiyal B, Sharma A, Bera SK (2011) Glacial lakes and geomorphological evolution of Schirmacher Oasis, East Antarctica, during late Quaternary. Quat Int 235:128–136

    Article  Google Scholar 

  • Ragotzkie RA, Likens GE (1964) The heat balance of two Antarctic lakes. Limnol Oceanogr 9:412–425

    Article  Google Scholar 

  • Rai H, Khare R, Nayaka S, Upreti DK, Gupta RK (2011) Lichen synusiae in East Antarctica (Schirmacher Oasis and Larsemann Hills): substratum and morphological preferences. Czech Polar Rep 2:65–77

    Article  Google Scholar 

  • Ratelle MJ (1986) Stratigraphy and sedimentology of coastal lacustrine basins, northeastern Ellesmere Island, NWT. Geogr Phys Quatern 40:117–128

    Google Scholar 

  • Ravindra R (2001) Geomorphology of Schirmacher oasis, east Antarctica. In: Proceedings of the symposium on snow, ice and glacier geological survey of India, 53. pp 379–390

  • Reimer PJ, Baillie MGL, Bard E, Bayliss A, Beck JW, Blackwell PG, Bronk Ramsey C, Buck CE, Burr GS, Edwards R, Friedrich M, Grootes PM, Guilderson TP, Hajdas I, Heaton TJ, Hogg AG, Hughen KA, Kaiser KF, Kromer B, McCormac FG, Manning SW, Reimer RW, Richards DA, Southon JR, Talamo S, Turney CSM, van der Plicht J, Weyhenmeyer CE (2009) IntCal09 and Marine09 radiocarbon age calibration curves, 0–50,000 years cal BP. Radiocarbon 51:1111–1150

    Article  Google Scholar 

  • Retelle MJ, Child JK (1996) Suspended sediment transport and deposition in a high arctic meromictic lake. J Paleolimnol 16:151–167

    Article  Google Scholar 

  • Roy R, Pratihary A, Narvenkar G, Mochemadkar S, Gauns M, Naqvi SWA (2011) The relationship between volatile halocarbons and phytoplankton pigments during a Trichodesmium bloom in the coastal eastern Arabian Sea. Estuar Coast Shelf Sci 95(1):110–118

    Article  Google Scholar 

  • Simmons GM Jr, Wharton RA Jr, McKay CP, Nedell S, Clow G (1986) Sand/ice interactions and sediment deposition in perennially ice-covered Antarctic lakes. Antarct J US 21:217–220

    Google Scholar 

  • Smeltzer E, Swain EB (1985) Answering lake management questions with paleolimnology. In: Lake reserves. Management—practical applications. Proceedings of 4th annual conference and symposium (NALMS), vol 390. pp 268–274

  • Smith JA, Hodgson DA, Bentley MJ, Verleyen E, Leng MJ, Roberts SJ (2006) Limnology of two Antarctic Epishelf lakes and their potential to record periods of ice shelf loss. J Paleolimnol 35:373–394

    Article  Google Scholar 

  • Spaulding SA, McKnight DM, Stoermer EF, Doran PT (1997) Diatoms in sediments of perennially ice-covered Lake Hoare, and implications for interpreting lake history in the McMurdo Dry Valleys of Antarctica. J Paleolimnol 17:403–420

    Article  Google Scholar 

  • Squyres SW, Andersen DW, Nedell SS, Wharton RA (1991) Lake Hoare, Antarctica: sedimentation through thick perennial ice cover. Sedimentology 38:363–379

    Article  Google Scholar 

  • Stuiver M, Reimer PJ (1993) Extended C-14 data-base and revised Calib 3.0 C-14 age calibration program. Radiocarbon 35:215–230

    Article  Google Scholar 

  • Sugden DE, McCulloch RD, Bory Aloys JM, Hein AS (2009) Influence of Patagonian glaciers on Antarctic dust deposition during the last glacial period. Nat Geosci 2:281–285

    Article  Google Scholar 

  • Takano Y, Kojima H, Takeda E, Yokoyama Y, Fukui M (2015) Biogeochemistry and limnology in Antarctic subglacial weathering: molecular evidence of the linkage between subglacial silica input and primary producers in a perennially ice-covered lake. Prog Earth Planet Sci 2:8–22. doi:10.1186/s40645-015-0036-7

    Article  Google Scholar 

  • Talbot MR (2001) Nitrogen isotopes in palaeolimnology. In: Last WM, Smol JP (eds) Tracking environmental. Changes using Lake Sediments: physical and chemical techniques. Kluwer, Dordrecht, pp 401–439

    Google Scholar 

  • Talbot MR, Johannessen T (1992) A high resolution palaeoclimatic record for the last 27,500 years in tropical West Africa from the carbon and nitrogen isotopic composition of lacustrine organic matter. Earth Planet Sci Lett 110:23–37

    Article  Google Scholar 

  • Teranes JL, Bernasconi SM (2005) Factors controlling δ13C values of sedimentary carbon in hypertrophic Baldeggersee Switzerland, and implications for interpreting isotope excursions in lake sedimentary records. Limnol Oceanogr 50:914–922

    Article  Google Scholar 

  • Verlecar XN, Dhargalkar VK, Matondkar SGP (1996) Ecobiological studies of the freshwater lakes at Schirmacher Oasis, Antarctica. Twelfth Indian Expedition to Antarctica, Scientific Report 10:233–257

    Google Scholar 

  • Verleyen E, Hodgson DA, Sabbe K, Vyverman W (2004) Late Quaternary deglaciation and climate history of the Larsemann Hills (East Antarctica). J Quat Sci 19:361–375

    Article  Google Scholar 

  • Verleyen E, Hodgson DA, Sabbe K, Cremer H, Emslie SD, Gibson J, Hall B, Imura S, Kudoh S, Marshall GJ, McMinn A, Melles M, Newman L, Roberts D, Roberts SJ, Singh SM, Sterken M, Tavernier I, Verkulich S, Van de Vyver E, Nieuwenhuyze WV, Wagner B, Vyverma W (2011) Post-glacial regional climate variability along the East Antarctic coastal margin—evidence from shallow marine and coastal terrestrial records. Earth Sci Rev 104:199–212

    Article  Google Scholar 

  • Warrier AK, Mahesh BS, Mohan Rahul, Shankar R, Asthana R, Ravindra R (2014) Glacial–interglacial climatic variations at the Schirmacher Oasis, East Antarctica: the first report from environmental magnetism. Palaeogeogr Palaeoclimatol Palaeoecol 412:249–260

    Article  Google Scholar 

  • Warrier AK, Pednekar H, Mahesh BS, Mohan Rahul, Gazi S (2016) Sediment grain size and surface textural observations of quartz grains in late quaternary lacustrine sediments from Schirmacher Oasis, East Antarctica: Paleoenvironmental significance. Polar Sci 10:89–100

    Article  Google Scholar 

  • Wharton RA Jr, McKay CP, Simmons GM Jr, Parker BC (1986) Oxygen budget of a perennially ice covered Antarctic lake. Limnol Oceanogr 31:437–443

    Article  Google Scholar 

  • Wharton RA, Lyons WB Jr, Mancinelli RL, Simmons GM Jr (1987) Perennial N2 supersaturation in an Antarctic lake. Nature 325:343–345

    Article  Google Scholar 

  • Wharton RA, Simmons GM Jr, McKay CP (1989) Perennially ice-covered Lake Hoare, Antarctica: physical environment, biology, and sedimentation. Hydrobiologia 172:306–320

    Article  Google Scholar 

  • Williamson CE, Saros JE, Schindler DW (2009) Sentinels of change. Science 323:887–888

    Article  Google Scholar 

  • Xu H, Ai L, Tan L, An Z (2006) Stable isotopes in bulk carbonates and organic matter in recent sediments of Lake Qinghai and their climatic implications. Chem Geol 235:262–275

    Article  Google Scholar 

  • Yoon HI, Khim BK, Lee K, Park YH, Yoo KC (2006) Reconstruction of postglacial paleo-productivity in Long Lake, King George Island, West Antarctica. Polish Pol Res 27:189–206

    Google Scholar 

Download references

Acknowledgements

We thank the Secretary, MoES and the Director, ESSO-NCAOR for their encouragement and support under the project “Past Climate and Oceanic Variability”. We are grateful to the NSF-AMS Dating Facility, University of Arizona for providing AMS 14C dates and acknowledge Siddhesh Nagoji - NCAOR for analysis using EA and IRMS. Dr. V. K. Banakar is thanked for his inputs. The authors thank the Logistics Division and members of the 28th Indian Scientific Expedition to Antarctica for their help. Comments and suggestions from the Editor and anonymous reviewers were of considerable help in revising this paper and are greatly appreciated. This is NCAOR contribution no. 18/2017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Badanal Siddaiah Mahesh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahesh, B.S., Warrier, A.K., Mohan, R. et al. Response of Sandy Lake in Schirmacher Oasis, East Antarctica to the glacial-interglacial climate shift. J Paleolimnol 58, 275–289 (2017). https://doi.org/10.1007/s10933-017-9977-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10933-017-9977-8

Keywords

Navigation