Skip to main content
Log in

Rapid determination of the pollen content in lake sediment cores as a tool in paleoenvironmental research

  • note
  • Published:
Journal of Paleolimnology Aims and scope Submit manuscript

Abstract

Pollen analysis of lake sediments is a time-consuming technique. The laborious sample preparation hampers quick determination of the pollen content and localization of sediment intervals based on palynological criteria within long sediment cores. This study introduces a quick and almost non-destructive pollen analytical method using smear-slides that allows the preliminary determination of the pollen content of lake sediments. Pollen grains are stained with Calberla’s solution. To test the reliability of the method, the results of the smear-slide technique were compared to those of a standard pollen analysis from the same stratigraphic sequence. The data from both techniques produced largely consistent results. Differences between both data sets reflect the statistical uncertainties associated with the low pollen concentrations in the smear slides and the low pollen counts employed in this technique. Despite these limitations, application of this method during the initial investigation of lake sediments can overcome some of the major challenges of paleoenvironmental research projects. The method can be used to rapidly determine important changes in the pollen stratigraphy, which allows the identification of sediment intervals for further, more detailed proxy analysis and the correlation of sediment cores. Knowledge of the pollen stratigraphy at an early stage of a research project can also assist in the selection of samples for radiocarbon dating. In addition, staining of sediment samples in the field can be used to verify the success of lake coring campaigns by comparing preliminarily determined pollen contents with expected pollen assemblages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Balsam WL, McCoy FW Jr (1987) Atlantic sediments: glacial/interglacial comparisons. Paleoceanography 2:531–542

    Article  Google Scholar 

  • Bennett KD (1996) Determination of the number of zones in a biostratigraphical sequence. New Phytol 132:155–170

    Article  Google Scholar 

  • Bennett KD, Willis KJ (2001) 2. Pollen. In: Smol JP, Birks HJB, Last WM (eds) Tracking environmental change using lake sediments. Volume 3: terrestrial, algal, and siliceous indicators. Kluwer Academic Publishers, Dordrecht, pp 5–32

    Google Scholar 

  • Beug H-J (2004) Leitfaden der Pollenbestimmung für Mitteleuropa und angrenzende Gebiete. Dr Friedrich Pfeil, München

    Google Scholar 

  • Birks HJB (1986) Numerical zonation, comparison and correlation of Quaternary pollen-stratigraphical data. In: Berglund BE (ed) Handbook of Holocene palaeoecology and palaeohydrology. Blackburn Press, Caldwell, pp 743–774

    Google Scholar 

  • Birks HJB (2012) Chapter 2: Overview of numerical methods in palaeolimnology. In: Birks HJB, Lotter AF, Juggins S, Smol JP (eds) Tracking environmental change using lake sediments: data handling and numerical techniques. Springer, Dordrecht, pp 19–92

  • Blackman VH (1898) On the cytological features of fertilization and related phenomena in Pinus silvestris L. Philos Trans R Soc Lond Ser B 190:395–426

    Article  Google Scholar 

  • Brookes RHW, Thomas KW (1967) The distribution of pollen grains on microscope slides. I. The non-randomness of the distribution. Pollen Spores 9:621–629

    Google Scholar 

  • Calberla E (1878) Der Befruchtungsvorgang beim Ei von Petromyzon Planery. Z Wiss Zool 30:437–479

    Google Scholar 

  • Clarke KR (1993) Non-parametric multivariate analyses of changes in community structure. Aust J Ecol 18:117–143

    Article  Google Scholar 

  • Faegri K, Kaland PE, Krzywinski K (1989) Textbook of pollen analysis, 4th edn. Wiley, New York

    Google Scholar 

  • Fischer HCA (1890) Beiträge zur vergleichenden Morphologie der Pollenkörner. J.U. Kern’s, Breslau

    Google Scholar 

  • Fraser WT, Sephton MA, Watson JS, Self S, Lomax BH, James DI, Wellman CH, Callaghan TV, Beerling DJ (2011) UV-B absorbing pigments in spores: biochemical responses to shade in a high-latitude birch forest and implications for sporopollenin-based proxies of past environmental change. Polar Res 30:8312. doi:10.3402/polar.v30i0.8312

    Article  Google Scholar 

  • Fraser WT, Scott AC, Forbes AES, Glasspool IJ, Plotnick RE, Kenig F, Lomax BH (2012) Evolutionary stasis of sporopollenin biochemistry revealed by unaltered Pennsylvanian spores. New Phytol 196:397–401

    Article  Google Scholar 

  • Gay LN, Curtis H, Norris T (1941) A pollen survey of the islands of Bermuda. Bull Johns Hopkins Hosp 68:179–189

    Google Scholar 

  • Grimm EC (1987) CONISS: a FORTRAN 77 program for stratigraphically constrained cluster analysis by the method of incremental sum of squares. Comput Geosci 13:13–35

    Article  Google Scholar 

  • Grimm EC (1991) Tilia v. 2.0.b.4. Illinois State Museum, Research and Collections Center, Springfield

    Google Scholar 

  • Grimm EC (2004) TGView v. 2.0.2, Software. Illinois State Museum, Research and Collections Center, Springfield

    Google Scholar 

  • Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron 4:1–9

    Google Scholar 

  • Horobin RW, Kiernan JA (2002) Conn’s biological stains. BIOS, Oxford

    Google Scholar 

  • Jones GD (2012) Pollen extraction from insects. Palynology 36:86–109

    Article  Google Scholar 

  • Kelts KR (2003) Components in lake sediments: smear slide identifications. In: Valero-Garcés BL (ed) Limnogeology in Spain: a tribute to Kerry R. Kelts. Consejo Superior de Investigaciones Científicas, Madrid, pp 59–72

    Google Scholar 

  • Moore PD, Webb JA, Collinson ME (1991) Pollen analysis. Blackwell, Oxford

    Google Scholar 

  • Myrbo A, Morrisson A, McEwan A (2011) Smear slides made easier by a new online resource: TMI (Tool for Microscopic Identification). Geol Soc Am Abstr Programs 43(5):466

    Google Scholar 

  • Niklaus TR, Bonani G, Suter M, Wölfli W (1994) Systematic investigation of uncertainties in radiocarbon dating due to fluctuations in the calibration curve. Nucl Instrum Methods Phys Res B 92:194–200

    Article  Google Scholar 

  • O’Connell M, Ghilardi B, Morrison L (2014) A 7000-year record of environmental change, including early farming impact, based on lake-sediment geochemistry and pollen data from County Sligo, western Ireland. Quat Res 81:35–49

    Article  Google Scholar 

  • Ogden EC, Raynor GS, Hayes JV, Lewis DM, Haines JH (1974) Manual for sampling pollen. Hafner Press, New York

    Google Scholar 

  • Parker AG, Goudi AS, Anderson DE, Robinson MA, Bonsall C (2002) A review of the mid-Holocene elm decline in the British Isles. Phys Geogr 26:1–45

    Article  Google Scholar 

  • Pratt HN, Colmes A, Fromer J, Greene JE, Chafee FH, Clapp WB (1941) Pollen and mold survey of southeastern New England—1940. New Engl J Med 225:533–538

    Article  Google Scholar 

  • Reitsma T (1969) Size modification of recent pollen grains under different treatments. Rev Palaeobot Palynol 9:175–202

    Article  Google Scholar 

  • Rothwell RG (1989) The smear slide method. In: Rothwell RG (ed) Minerals and mineraloids in marine sediments. Springer, Netherlands, pp 21–24

    Chapter  Google Scholar 

  • Rull V (1987) A note on pollen counting in palaeoecology. Pollen Spores 29:471–480

    Google Scholar 

  • Sack S (1949) How far can wind-borne pollen be disseminated? J Allergy 20:453–460

    Article  Google Scholar 

  • Schnurrenberger D, Russell J, Kelts K (2003) Classification of lacustrine sediments based on sedimentary components. J Paleolimnol 29:141–154

    Article  Google Scholar 

  • Smith EG (1990) Sampling and identifying allergenic pollens and molds. Blewstone Press, San Antonio

    Google Scholar 

  • Stolze S, Dörfler W, Monecke T, Nelle O (2012) Evidence for climatic variability and its impact on human development during the Neolithic from Loughmeenaghan, County Sligo, Ireland. J Quat Sci 27:393–403

    Article  Google Scholar 

  • Stolze S, Muscheler R, Dörfler W, Nelle O (2013) Solar influence on climate variability and human development during the Neolithic: evidence from a high-resolution multi-proxy record from Templevanny Lough, County Sligo, Ireland. Quat Sci Rev 67:138–159

    Article  Google Scholar 

  • Telford RF, Heegaard E, Birks HJB (2004) The intercept is a poor estimate of a calibrated radiocarbon age. Holocene 14:296–298

    Article  Google Scholar 

  • Watson JS, Sephton MA, Sephton SV, Self S, Fraser WT, Lomax BH, Gilmour I, Wellman CH, Beerling DJ (2007) Rapid determination of spore chemistry using thermochemolysis gas chromatography-mass spectrometry and micro-Fourier transform infrared spectroscopy. Photochem Photobiol Sci 6:689–694

    Article  Google Scholar 

  • Wohlfahrt B, Skog G, Possnert G, Holmquist B (1998) Pitfalls in the AMS radiocarbon-dating of terrestrial macrofossils. J Quat Sci 13:137–145

    Article  Google Scholar 

Download references

Acknowledgments

I express my gratitude to F. Coates for introducing me to aerobiological research. I am indebted to W. Dörfler, I. Feeser, B. Ghilardi, P. Majkut, O. Nelle, M. O’Connell, and P. O’Rafferty for help provided during the coring campaign. T. Meuzelaar, J. Monecke, and T. Monecke are thanked for helpful discussions. H. Nichols, G. Chen, and two anonymous reviewers provided valuable comments on an earlier version of the manuscript. The field work was made possible through a research grant by the German Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susann Stolze.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stolze, S. Rapid determination of the pollen content in lake sediment cores as a tool in paleoenvironmental research. J Paleolimnol 54, 161–170 (2015). https://doi.org/10.1007/s10933-015-9836-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10933-015-9836-4

Keywords

Navigation