Skip to main content

Advertisement

Log in

Historical trends of mercury and spheroidal carbonaceous particle deposition in sub-alpine lakes in the Great Basin, United States

  • Original paper
  • Published:
Journal of Paleolimnology Aims and scope Submit manuscript

Abstract

The geochemistry of lake sediments was used to identify anthropogenic factors influencing aquatic ecosystems of sub-alpine lakes in the western United States during the past century. Sediment cores were recovered from six high-elevation lakes in the central Great Basin of the United States. The proxies utilized to examine the degree of recent anthropogenic environmental change include spheroidal carbonaceous particle (SCP), mercury (Hg), and sediment organic content estimated using loss-on-ignition. Chronologies for the sediment cores, developed using 210Pb, indicate the cores span the twentieth century. Mercury flux varied between lakes but all exhibited increasing fluxes during the mid-twentieth century. The mean ratio of modern (post-A.D. 1985) to preindustrial (pre-A.D. 1880) Hg flux was 5.2, which is comparable to the results from previous studies conducted in western North America. Peak SCP flux for all lakes occurred between approximately A.D. 1940 and A.D. 1970, after which time the SCP flux was greatly reduced. The reduction in SCP input is likely due to better controls on combustion sources. Measured Hg concentrations and calculated sedimentation rates suggest atmospheric Hg flux increased in the early 1900s, from A.D. 1920 to A.D. 1990, and at present. Atmospheric deposition is the primary source of the anthropogenic inputs of Hg and SCPs to these high elevation lakes. The input of SCPs, which is largely driven by regional sources, has declined with the implementation of national pollution control regulations. Mercury deposition in the Great Basin has most likely been influenced more by regional inputs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Appleby PG (2001) chronostratigraphic techniques in recent sediments. In: Last WM (ed) Tracking environmental change using lake sediments. Volume 1: basin analysis, coring, and chronological techniques. Kluwer Academic Publishers, Dordrecht, pp 171–203

    Google Scholar 

  • CAA (1990) Clean Air Act. United States Code Title 42, Chapter 85

  • Coats RR (1987) Geology of Elko County, Nevada. Nevada Bureau of Mines and Geology, University of Nevada-Reno, Reno

    Google Scholar 

  • Drevnick PE, Shinneman ALC, Lamborg CH, Engstrom DR, Bothner MH, Oris JT (2010) Mercury Flux to Sediments of Lake Tahoe, California–Nevada. Water Air Soil Pollut 210:399–407

    Article  Google Scholar 

  • Eaton GP (1982) The basin and range province—origin and tectonic significance. Annu Rev Earth Planet Sci 10:409–440

    Article  Google Scholar 

  • Eckley CS, Gustin M, Miller MB, Marsik F (2011) Scaling non-point-source mercury emissions from two active industrial gold mines: influential variables and annual emission estimates. Environ Sci Technol 45:392–399

    Article  Google Scholar 

  • Engstrom DR, Swain EB, Henning TA, Brigham ME, Brezonik PL (1994) Atmospheric mercury deposition to lakes and watersheds. In: Baker LA (ed) Environmental chemistry of lakes and reservoirs. American Chemical Society, Washington, DC, pp 33–66

  • Engstrom DR, Balogh SJ, Swain EB (2007) History of mercury inputs to Minnesota lakes: Influences of watershed disturbance and localized atmospheric deposition. Limnol Oceanogr 52:2467–2483

    Article  Google Scholar 

  • Fitzgerald WF, Engstrom DR, Mason RP, Nater EA (1998) The case for atmospheric mercury contamination in remote areas. Environ Sci Technol 32:1–7

    Article  Google Scholar 

  • Glew JR (1991) Miniature gravity corer for recovering short sediment cores. J Paleolimnol 5:285–287

    Article  Google Scholar 

  • Gray JE, Adams MG, Crock JG, Theodorakos PM (1999) Geochemical data for environmental studies of mercury mines in Nevada. Denver, CO (P.O. Box 25046, MS 973, Denver 80225-0046): U.S. Dept. of the Interior, U.S. Geological Survey

  • Gustin SM, Coolbaugh M, Engle M, Fitzgerald B, Keislar R, Lindberg S, Nacht D, Quashnick J, Rytuba J, Sladek C et al (2003) Atmospheric mercury emissions from mine wastes and surrounding geologically enriched terrains. Environ Geol 43:339–351

    Google Scholar 

  • Gustin MS, Lindberg SE, Weisberg PJ (2008) An update on the natural sources and sinks of atmospheric mercury. Appl Geochem 23:482–493

    Article  Google Scholar 

  • Heiri O, Lotter AF, Lemcke G (2001) Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. J Paleolimnol 25:101–110

    Article  Google Scholar 

  • Heyvaert AC, Reuter JE, Slotton DG, Goldman CR (2000) Paleolimnological reconstruction of historical atmospheric lead and mercury deposition at Lake Tahoe, California-Nevada. Environ Sci Technol 34:3588–3597

    Article  Google Scholar 

  • Houghton JG, Sakamoto CM, Gifford RO (1975) Nevada’s weather and climate. Mackay School of Mines, University of Nevada, Nevada Bureau of Mines and Geology, Reno

    Google Scholar 

  • Huang JY, Gustin MS (2012) Evidence for a free troposphere source of mercury in wet deposition in the Western United States. Environ Sci Technol 46:6621–6629

    Article  Google Scholar 

  • Kamman NC, Engstrom DR (2002) Historical and present fluxes of mercury to Vermont and New Hampshire lakes inferred from Pb-210 dated sediment cores. Atmos Environ 36:1599–1609

    Article  Google Scholar 

  • Karst-Riddoch TL, Pisaric MFJ, Youngblut DK, Smol JP (2005) Postglacial record of diatom assemblage changes related to climate in an alpine lake in the northern Rocky Mountains, Canada. Can J Bot 83:968–982

    Article  Google Scholar 

  • Landers DH, Simonich SM, Jaffe D, Geiser L, Campbell DH, Schwindt A, Schreck C, Kent M, Hafner W, Taylor HE et al (2008) The fate, transport, and ecological impacts of airborne contaminants in western national parks (USA). United States Environmental Protection Agency

  • Landers DH, Simonich SM, Jaffe D, Geiser L, Campbell DH, Schwindt A, Schreck C, Kent M, Hafner W, Taylor HE, Hageman K, Usenko S, Ackerman L, Schrlau J, Rose N, Blett T, Erway MM (2010) The Western Airborne Contaminant Assessment Project (WACAP): An Interdisciplinary evaluation of the impacts of airborne contaminants in Western US National Parks. Environ Sci Technol 44:855–859

    Article  Google Scholar 

  • Lapointe DD, Tingley JV, Jones RB (1991) Mineral resources of Elko County, Nevada. University of Nevada, Reno, MacKay School of Mines, Reno

    Google Scholar 

  • Lorey P, Driscoll CT (1999) Historical trends of mercury deposition in Adirondack lakes. Environ Sci Technol 33:718–722

    Article  Google Scholar 

  • Mast MA, Manthorne DJ, Roth DA (2010) Historical deposition of mercury and selected trace elements to high-elevation National Parks in the Western US inferred from lake-sediment cores. Atmos Environ 44:2577–2586

    Article  Google Scholar 

  • Miller MB, Gustin MS, Eckley CS (2011) Measurement and scaling of air-surface mercury exchange from substrates in the vicinity of two Nevada gold mines. Sci Total Environ 409:3879–3886

    Article  Google Scholar 

  • Neff JC, Ballantyne AP, Farmer GL, Mahowald NM, Conroy JL, Landry CC, Overpeck JT, Painter TH, Lawrence CR, Reynolds RL (2008) Increasing eolian dust deposition in the western United States linked to human activity. Nat Geosci 1:189–195

    Article  Google Scholar 

  • Outridge PM, Sanei H, Stern GA, Hamilton PB, Goodarzi F (2007) Evidence for control of mercury accumulation rates in Canadian High Arctic lake sediments by variations of aquatic primary productivity. Environ Sci Technol 41:5259–5265

    Article  Google Scholar 

  • Phillips VJA, St Louis VL, Cooke CA, Vinebrooke RD, Hobbs WO (2011) Increased mercury loadings to Western Canadian Alpine lakes over the past 150 years. Environ Sci Technol 45:2042–2047

    Article  Google Scholar 

  • Pirrone N, Mason RP (2009) Mercury fate and transport in the global atmosphere: emissions, measurements and models. Springer, Dordrecht

    Google Scholar 

  • Pla S, Monteith D, Flower R, Rose N (2009) The recent palaeolimnology of a remote Scottish loch with special reference to the relative impacts of regional warming and atmospheric contamination. Freshw Biol 54:505–523

    Article  Google Scholar 

  • Porinchu DF, Potito AP, MacDonald GM, Bloom AM (2007) Subfossil chironomids as indicators of recent climate change in Sierra Nevada, California, lakes. Arct Antarct Alp Res 39:286–296

    Article  Google Scholar 

  • Porinchu DF, Reinemann S, Mark BG, Box JE, Rolland N (2010) Application of a midge-based inference model for air temperature reveals evidence of late-20th century warming in sub-alpine lakes in the central Great Basin, United States. Quat Int 215:15–26

    Article  Google Scholar 

  • Porter E, Johnson S (2007) Translating science into policy: Using ecosystem thresholds to protect resources in Rocky Mountain National Park. Environ Pollut 149:268–280

    Article  Google Scholar 

  • Presto AA, Granite EJ (2006) Survey of catalysts for oxidation of mercury in flue gas. Environ Sci Technol 40:5601–5609

    Article  Google Scholar 

  • Renberg I, Wik M (1985) Carbonaceous particles in lake sediments- pollutants from fossil fuel combustion. Ambio Stockholm 14:161–163

    Google Scholar 

  • Ressel MW, Henry CD (2006) Igneous geology of the Carlin Trend, Nevada: development of the Eocene plutonic complex and significance for Carlin-type gold deposits. Econ Geol 101:347–383

    Article  Google Scholar 

  • Rollin LVB, Hose RK, Smith RM, Geological S (1976) Geology and mineral resources of White Pine County. Mackay School of Mines, University of Nevada, Reno, Nevada

    Google Scholar 

  • Rose NL (1994) A note on further refinements to a procedure for the extraction of carbonaceous fly-ash particles from sediments. J Paleolimnol 11:201–204

    Article  Google Scholar 

  • Rose NL (2001) Fly-Ash Particles. In: Last William M (ed) Tracking environmental change using lake sediments. Springer, Netherlands, pp 319–349

    Google Scholar 

  • Rose NL, Monteith DT (2005) Temporal trends in spheroidal carbonaceous particle deposition derived from annual sediment traps and lake sediment cores and their relationship with non-marine sulphate. Environ Pollut 137:151–163

    Article  Google Scholar 

  • Rose NL, Juggins S, Watt J (1996) Fuel-type characterization of carbonaceous fly-ash particles using EDS-derived surface chemistries and its application to particles extracted from lake sediments. Proc R Soc -Math Phys Eng Sci 452:881–907

    Article  Google Scholar 

  • Sanders RD, Coale KH, Gill GA, Andrews AH, Stephenson M (2008) Recent increase in atmospheric deposition of mercury to California aquatic systems inferred from a 300-year geochronological assessment of lake sediments. Appl Geochem 23:399–407

    Article  Google Scholar 

  • Schindler DW (2009) Lakes as sentinels and integrators for the effects of climate change on watersheds, airsheds, and landscapes. Limnol Oceanogr 54:2349–2358

    Article  Google Scholar 

  • Schuster PF, Krabbenhoft DP, Naftz DL, Cecil LD, Olson ML, Dewild JF, Susong DD, Green JR, Abbott ML (2002) Atmospheric mercury deposition during the last 270 years: a glacial ice core record of natural and anthropogenic sources. Environ Sci Technol 36:2303–2310

    Article  Google Scholar 

  • Selin NE (2009) Global biogeochemical cycling of mercury: a review. Annu Rev Environ Resour 34:43–63

    Article  Google Scholar 

  • Shuman B (2003) Controls on loss-on-ignition variation in cores from two shallow lakes in the northeastern United States. J Paleolimnol 30:371–385

    Article  Google Scholar 

  • Smol JP (2008) Pollution of lakes and rivers: a paleoenvironmental perspective. Blackwell Pub, Malden, MA

    Google Scholar 

  • Swartzendruber PC, Jaffe DA, Prestbo EM, Weiss-Penzias P, Selin NE, Park R, Jacob DJ, Strode S, Jaegle L (2006) Observations of reactive gaseous mercury in the free troposphere at the Mount Bachelor Observatory. J Geophys Res 111:12

    Google Scholar 

  • Turner L, Delorme L (1996) Assessment of 210Pb data from Canadian lakes using the CIC and CRS models. Environ Geol 28:78–87

    Article  Google Scholar 

  • Van Metre PC, Fuller CC (2009) Dual-core mass-balance approach for evaluating mercury and Pb-210 atmospheric fallout and focusing to lakes. Environ Sci Technol 43:26–32

    Article  Google Scholar 

  • Wania F, Mackay D (1996) Peer reviewed: tracking the distribution of persistent organic pollutants. Environ Sci Technol 30:390A–396A

    Article  Google Scholar 

  • Watras CJ, Huckabee JW, International Conference on Mercury as a Global P (1994) Mercury pollution: integration and synthesis

  • Wolfe AP, Van Gorp AC, Baron JS (2003) Recent ecological and biogeochemical changes in alpine lakes of Rocky Mountain National Park (Colorado, USA): a response to anthropogenic nitrogen deposition. Geobiology 1:153–168

    Article  Google Scholar 

  • WRCC (2012) Western Regional Climate Center. 2012 Available at: http://www.wrcc.dri.edu/

  • Wright G, Gustin MS, Weiss-Penzias P, Miller MB (2014a) Investigation of mercury deposition and potential sources at six sites from the Pacific Coast to the Great Basin, USA. Sci Total Environ 470:1099–1113

    Article  Google Scholar 

  • Wright G, Woodward C, Peri L, Weisberg PJ, Gustin MS (2014b) Application of tree rings [dendrochemistry] for detecting historical trends in air Hg concentrations across multiple scales. Biogeochem. doi: 10.1007/s10533-014-9987-9

  • Yang HD, Rose NL (2003) Distribution of mercury in six lake sediment cores across the UK. Sci Total Environ 304:391–404

    Article  Google Scholar 

Download references

Acknowledgments

We thank Gretchen Baker (Staff Ecologist, GBNP), Andrew J. Ferguson (Superintendent, GBNP) and United States Forest Service (USFS) for providing access to the research sites and facilitating our research. We also thank Paul Soltesz, Jim DeGrand, and Nathan Patrick for their unyielding assistance in the field; and Christian Briggs and Lydia Peri for analyzing Hg in the sediment samples at University Nevada-Reno. We gratefully acknowledge The Western National Park Association (WPNA), the Department of Geography at The Ohio State University, and a NSF Doctoral Dissertation Improvement Grant to D. F. Porinchu and S.A. Reinemann (BCS-1130340) for funding this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott A. Reinemann.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reinemann, S.A., Porinchu, D.F., Gustin, M.S. et al. Historical trends of mercury and spheroidal carbonaceous particle deposition in sub-alpine lakes in the Great Basin, United States. J Paleolimnol 52, 405–418 (2014). https://doi.org/10.1007/s10933-014-9801-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10933-014-9801-7

Keywords

Navigation