Skip to main content
Log in

Biophysical Analysis of the N-Terminal Domain from the Human Protein Phosphatase 1 Nuclear Targeting Subunit PNUTS Suggests an Extended Transcription Factor TFIIS-Like Fold

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

Human protein phosphatase 1 nuclear targeting subunit (PNUTS) plays critical roles in DNA repair, cell growth and survival. The N-terminal domain of PNUTS mediates interactions with Tox4 and the phosphatase and tensin homolog PTEN, which are essential for the roles of this protein. To study this N-terminal domain, we have established its recombinant overproduction in E. coli utilizing NusA fusion. Upon removal of the tag, the remaining PNUTS sample is soluble and highly pure. We have characterized the domain using circular dichroism and nuclear magnetic resonance and analyzed its sequence using bioinformatics. All data agree in suggesting that the PNUTS N-terminal segment adopts a compact, globular fold rich in α-helical content, where the folded fraction is substantially larger than the previously annotated fold. We conclude that this domain adopts a single fold, likely being an extended form of the transcription factor S-II leucine/tryptophan conserved-motif. Thermal denaturation yielded a melting temperature of ~49.5 °C, confirming the stability of the fold. These findings pave the way for the molecular characterization of functional interactions mediated by the N-terminal region of PNUTS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

CD:

Circular dichroism

EDTA:

Ethylenediaminetetraacetic acid

HSQC:

Heteronuclear single quantum coherence

NMR:

Nuclear magnetic resonance

PNUTS:

Protein phosphatase 1-binding nuclear targeting protein

PP1:

Protein phosphatase 1

SDS-PAGE:

Sodium dodecyl sulfate polyacrylamide gel electrophoresis

TCEP:

Tris-2-carboxyethyl-phosphine

TFIIS:

Transcription factor IIS

TFIIS LW-motif:

Structural motif of the transcription factor IIS with conserved leucine and tryptophan residues

References

  1. Xing Z, Lin A, Li C, Liang K, Wang S, Liu Y, Park PK, Qin L, Wei Y, Hawke DH, Hung M, Lin C, Yang L (2014) lncRNA directs cooperative epigenetic regulation downstream of chemokine signals. Cell 159:1110–1125

    Article  CAS  Google Scholar 

  2. Kim YM, Watanabe T, Allen PB, Kim YM, Lee SJ, Greengard P, Nairn AC, Kwon YG (2003) PNUTS, a protein phosphatase 1 (PP1) nuclear targeting subunit. Characterization of its PP1- and RNA-binding domains and regulation by phosphorylation. J Biol Chem 278:13819–13828

    Article  CAS  Google Scholar 

  3. Bennett D (2005) Transcriptional control by chromosome-associated protein phosphatase-1. Biochem Soc Trans 33:1444–1446

    Article  CAS  Google Scholar 

  4. Ciurciu A, Duncalf L, Jonchere V, Lansdale N, Vasieva O, Glenday P, Rudenko A, Vissi E, Cobbe N, Alphey L, Bennett D (2013) PNUTS/PP1 regulates RNAPII-mediated gene expression and is necessary for developmental growth. PLoS Genet 9:e1003885

    Article  Google Scholar 

  5. Dorn G (2013) miR-34a and the cardiomyopathy of senescence: SALT PNUTS, SALT PNUTS! Cell Metab 17:629–630

    Article  CAS  Google Scholar 

  6. Lee J, You J, Dobrota E, Skalnik DG (2010) Identification and characterization of a novel human PP1 phosphatase complex. J Biol Chem 285:24466–24476

    Article  CAS  Google Scholar 

  7. Allen PB, Kwon Y, Nairn AC, Greengard P (1998) Isolation and characterization of PNUTS, a putative protein phosphatase 1 nuclear targeting subunit. J Biol Chem 273:4089–4095

    Article  CAS  Google Scholar 

  8. Ramakrishnan R, Liu H, Donahue H, Malovannaya A, Qin J, Rice AP (2012) Identification of novel CDK9 and Cyclin T1-associated protein complexes (CCAPs) whose siRNA depletion enhances HIV-1 Tat function. Retrovirology 9:90

    Article  CAS  Google Scholar 

  9. Kapoor R, Sakshi A, Sanket SP, Binod K, Subbareddy M, Banerjea AC (2015) MicroRNA34a enhances HIV-1 replication by targeting PNUTS/PPP1R10 which negatively regulates HIV-1 transcriptional complex formation. Biochem J 470:293–302

    Article  CAS  Google Scholar 

  10. Landsverk HB, Mora-Bermúdez F, Landsverk OJ, Hasvold G, Naderi S, Bakke O, Ellenberg J, Collas P, Syljuåsen RG, Küntziger T (2010) The protein phosphatase 1 regulator PNUTS is a new component of the DNA damage response. EMBO Rep 11:868–875

    Article  CAS  Google Scholar 

  11. Kavela S, Shinde SR, Ratheesh R, Viswakalyan K, Bashyam MD, Gowrishankar S, Vamsy M, Pattnaik S, Rao S, Sastry RA, Srinivasulu M, Chen J, Maddika S (2013) PNUTS functions as a proto-oncogene by sequestering PTEN. Cancer Res 73:205–214

    Article  CAS  Google Scholar 

  12. Ling Y, Smith AJ, Morgan GT (2006) A sequence motif conserved in diverse nuclear proteins identifies a protein interaction domain utilised for nuclear targeting by human TFIIS. Nucleic Acids Res 34:2219–2229

    Article  CAS  Google Scholar 

  13. Diebold M, Koch M, Loeliger E, Cura V, Winston F, Cavarelli J, Romier C (2010) The structure of an Iws1/Spt6 complex reveals an interaction domain conserved in TFIIS, Elongin A. EMBO J 29:3979–3991

    Article  CAS  Google Scholar 

  14. Klug A, Rhodes D (1987) Zinc fingers: a novel protein fold for nucleic acid recognition. Cold Spring Harb Symp Quant Biol 52:473–482

    Article  CAS  Google Scholar 

  15. Choy MS, Hieke M, Kumar GS, Lewis GR, Gonzalez-DeWhitt KR, Kessler RP, Stein BJ, Hessenberger M, Nairn AC, Peti W, Page R (2014) Understanding the antagonism of retinoblastoma protein dephosphorylation by PNUTS provides insights into the PP1 regulatory code. Proc Natl Acad Sci USA 111:4097–4102

    Article  CAS  Google Scholar 

  16. Bennett D, Lyulcheva E, Alphey L, Hawcroft G (2006) Towards a comprehensive analysis of the protein phosphatase 1 interactome in Drosophila. J Mol Biol 364:196–212

    Article  CAS  Google Scholar 

  17. Hildebrand A, Remmert M, Biegert A, So J (2009) Fast and accurate automatic structure prediction with HHpred. Proteins 77:128–132

    Article  CAS  Google Scholar 

  18. Biegert A, Lupas AN (2005) The HHpred interactive server for protein homology detection and structure prediction. Nucleic Acids Res 33:244–248

    Article  Google Scholar 

  19. Söding J, Biegert A, Lupas AN (2005) The HHpred interactive server for protein homology detection and structure prediction. Nucleic Acids Res 33:W244–W248

    Article  Google Scholar 

  20. Buchan DW, Minneci F, Nugent TC, Bryson K, Jones DT (2013) Scalable web services for the PSIPRED protein analysis workbench. Nucleic Acids Res 41(W1):W349–W357

    Article  Google Scholar 

  21. Guermeur Y, Geourjon C, Gallinari P, Deléage G, Lyon NSDe, Italie A, Pierre U (1999) Improved performance in protein secondary structure prediction by inhomogeneous score combination. Bioinformatics 15:413–421

    Article  CAS  Google Scholar 

  22. King RD, Sternberg MJE (1996) Identification and application of the concepts important for accurate and reliable protein secondary structure prediction. Protein Sci 5:2298–2310

    Article  CAS  Google Scholar 

  23. Rost B, Sander C (1993) Prediction of protein secondary structure at better than 70% accuracy. J Mol Biol 232:584–599

    Article  CAS  Google Scholar 

  24. Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJE (2015) The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc 10:845–858

    Article  CAS  Google Scholar 

  25. Whitmore L, Wallace BA (2008) Protein secondary structure analyses from circular dichroism spectroscopy: methods and reference databases. Biopolymers 89:392–400

    Article  CAS  Google Scholar 

  26. Sreerama N, Woody RW (2000) Estimation of protein secondary structure from circular dichroism spectra: comparison of CONTIN, SELCON, and CDSSTR methods with an expanded reference set. Anal Biochem 287:252–260

    Article  CAS  Google Scholar 

  27. Mitchell A, Chang HY, Daugherty L, Fraser M, Hunter S, Lopez R, McAnulla C, McMenamin C, Nuka G, Pesseat S, Sangrador-Vegas A, Scheremetjew M, Rato C, Yong SY, Bateman A, Punta M, Attwood TK, Sigrist CJ, Redaschi N, Rivoire C, Xenarios I, Kahn D, Guyot D, Bork P, Letunic I, Gough J, Oates M, Haft D, Huang H, Natale DA, Wu CH, Orengo C, Sillitoe I, Mi H, Thomas PD, Finn RD (2015) The InterPro protein families database: the classification resource after 15 years. Nucleic Acids Res 43:D213–D221

    Article  Google Scholar 

  28. Finn RD, Coggill P, Eberhardt RY, Eddy SR, Mistry J, Mitchell AL, Potter SC, Punta M, Qureshi M, Sangrador-Vegas A, Salazar GA, Tate J, Bateman A (2016) The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res 44:D279–D285

    Article  Google Scholar 

  29. Letunic I, Doerks T, Bork P (2015) SMART: recent updates, new developments and status in 2015. Nucleic Acids Res 43:D257–D260

    Article  Google Scholar 

  30. Sigrist CJ, de Castro E, Cerutti L, Cuche BA, Hulo N, Bridge A, Bougueleret L, Xenarios I (2013) New and continuing developments at PROSITE. Nucleic Acids Res 41:D344–D347

    Article  CAS  Google Scholar 

  31. Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD, Bairoch A (2005) Protein identification and analysis tools on the ExPASy Server. In: Walker JM (ed) The proteomics protocols handbook. Humana Press, New York, pp 571–607

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Thomas Zacharchenko or Olga Mayans.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zacharchenko, T., Barsukov, I., Rigden, D.J. et al. Biophysical Analysis of the N-Terminal Domain from the Human Protein Phosphatase 1 Nuclear Targeting Subunit PNUTS Suggests an Extended Transcription Factor TFIIS-Like Fold. Protein J 35, 340–345 (2016). https://doi.org/10.1007/s10930-016-9677-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-016-9677-7

Keywords

Navigation