Skip to main content
Log in

Electron Paramagnetic Resonance Spectroscopy of Nitroxide-Labeled Calmodulin

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

Calmodulin (CaM) is a highly conserved calcium-binding protein consisting of two homologous domains, each of which contains two EF-hands, that is known to bind well over 300 proteins and peptides. In most cases the (Ca2+)4-form of CaM leads to the activation of a key regulatory enzyme or protein in a myriad of biological processes. Using the nitroxide spin-labeling reagent, 3-(2-iodoacetamido)-2,2,5,5-tetramethyl-1-pyrrolidinyl oxyl, bovine brain CaM was modified at 2–3 methionines with retention of activity as judged by the activation of cyclic nucleotide phosphodiesterase. X-band electron paramagnetic resonance (EPR) spectroscopy was used to measure the spectral changes upon addition of Ca2+ to the apo-form of spin-labeled protein. A significant loss of spectral intensity, arising primarily from reductions in the heights of the low, intermediate, and high field peaks, accompanied Ca2+ binding. The midpoint of the Ca2+-mediated transition determined by EPR occurred at a higher Ca2+ concentration than that measured with circular dichroic spectroscopy and enzyme activation. Recent data have indicated that the transition from the apo-state of CaM to the fully saturated form, [(Ca2+)4-CaM], contains a compact intermediate corresponding to [(Ca2+)2-CaM], and the present results suggest that the spin probes are reporting on Ca2+ binding to the last two sites in the N-terminal domain, i.e. for the [(Ca2+)2-CaM] → [(Ca2+)4-CaM] transition in which the compact structure becomes more extended. EPR of CaM, spin-labeled at methionines, offers a different approach for studying Ca2+-mediated conformational changes and may emerge as a useful technique for monitoring interactions with target proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CaM:

Calmodulin

CD:

Circular dichroism

EGTA:

Ethylene glycol-bis(2-aminoethylether-N,N,N,N-tetraacetic acid

EPR:

Electron paramagnetic resonance

HMQC:

Heteronuclear multiple quantum coherence

mW:

Milliwatts

NMR:

Nuclear magnetic resonance

PDE:

Phosphodiesterase (cyclic nucleotide)

SEM:

Standard error of the mean

SL-CaM:

Spin-labeled calmodulin

References

  1. Chin D, Means AR (2000) Calmodulin: a prototypical sensor. Trends Cell Biol 10:322–328

    Article  CAS  Google Scholar 

  2. Means AR (2008) The year in basic science: calmodulin kinase cascades. Mol Endocrinol 22:2759–2765

    Article  CAS  Google Scholar 

  3. Babu YS, Sack JS, Greenhough TJ, Bugg CE, Means AR, Cook WJ (1985) Three-dimensional structure of calmodulin. Nature 315:37–40

    Article  CAS  Google Scholar 

  4. Babu YS, Bugg CE, Cook WJ (1988) Structure of calmodulin refined at 2.2 Å resolution. J Mol Biol 204:191–204

    Article  CAS  Google Scholar 

  5. Chattopadhyaya R, Meador WE, Means AR, Quiocho FA (1992) Calmodulin structure refined at 1.7 Å resolution. J Mol Biol 228:1177–1192

    Article  CAS  Google Scholar 

  6. Kuboniwa H, Tjandra N, Grzesiek S, Ren H, Klee CB, Bax A (1995) Solution structure of calcium-free calmodulin. Nat Struct Biol 2:768–776

    Article  CAS  Google Scholar 

  7. Finn BE, Evenas J, Drakenberg T, Waltho JP, Thulin E, Forsen S (1995) Calcium-induced structural changes and domain autonomy in calmodulin. Nat Struct Biol 2:777–783

    Article  CAS  Google Scholar 

  8. Wilson MA, Brunger AT (2000) The 1.0 Å crystal structure of Ca2+-bound calmodulin: an analysis of disorder and implications for functionally relevant plasticity. J Mol Biol 301:1237–1256

    Article  CAS  Google Scholar 

  9. Chou JJ, Li S, Klee CB, Bax A (2001) Solution structure of Ca2+-calmodulin reveals flexible hand-like properties of its domains. Nat Struct Biol 8:990–996

    Article  CAS  Google Scholar 

  10. Fallon JL, Quiocho FA (2003) A closed compact structure of native Ca2+-calmodulin. Structure 11:1303–1307

    Article  CAS  Google Scholar 

  11. Kumar V, Chichili VPR, Tang X, Sivaraman J (2013) A novel trans conformation of ligand-free calmodulin. PLoS ONE 8:e54834

    Article  CAS  Google Scholar 

  12. Protein Data Bank (2013) [http://www.rcsb.org/pdb/]

  13. Yap KL, Kim J, Truong K, Sherman M, Yuan T, Ikura M (2000) Calmodulin target database. J Struct Funct Genomics 1: 8–14. [http://calcium.uhnres.utoronto.ca/ctdb/]

    Google Scholar 

  14. Wall ME, Clarage JB, Phillips GN Jr (1997) Motions of calmodulin characterized using both Bragg and diffuse X-ray scattering. Structure 5:1599–1612

    Article  CAS  Google Scholar 

  15. Meador WE, Means AR, Quiocho FA (1993) Modulation of calmodulin plasticity in molecular recognition on the basis of X-ray structures. Science 262:1718–1721

    Article  CAS  Google Scholar 

  16. Tidow H, Nissen P (2013) Structural diversity of calmodulin binding to its target sites. FEBS J 280(1):5551–5565

    Article  CAS  Google Scholar 

  17. Crouch TH, Klee CB (1980) Positive cooperative binding of calcium to bovine brain calmodulin. Biochemistry 19:3692–3698

    Article  CAS  Google Scholar 

  18. Masino L, Martin SR, Bayley PM (2000) Ligand binding and thermodynamic stability of a multidomain protein, calmodulin. Protein Sci 9:1519–1529

    Article  CAS  Google Scholar 

  19. VanScyoc WS, Shea MA (2001) Phenylalanine fluorescence studies of calcium binding to N-domain fragments of Paramecium calmodulin mutants show increased calcium affinity correlates with enhanced disorder. Protein Sci 10:1758–1768

    Article  CAS  Google Scholar 

  20. Yu T, Wu G, Yang H, Wang J, Yu S (2013) Calcium-dependent conformational transition of calmodulin determined by Fourier transform infrared spectroscopy. Int J Biol Macromol 56:57–61

    Article  CAS  Google Scholar 

  21. Hellstrand E, Kukora S, Shuman CF, Steenbergen S, Thulin E, Kohli A, Krouse B, Linse S, Åkerfeldt KS (2013) Förster resonance energy transfer studies of calmodulin produced by native protein ligation reveal inter-domain electrostatic repulsion. FEBS J 280:2675–2687

    Article  CAS  Google Scholar 

  22. Sorensen BR, Shea MA (1996) Calcium binding decreases the Stokes radius of calmodulin and mutants R74A, R90A, and R90G. Biophys J 71:3407–3420

    Article  CAS  Google Scholar 

  23. Berliner LJ (1976) Spin labeling: theory and applications. Academic Press, New York

    Google Scholar 

  24. Berliner LJ (1979) Spin labeling II: theory and applications. Academic Press, New York

    Google Scholar 

  25. Berliner LJ, Reuben J (1989) Spin labeling: theory and applications. Biological magnetic resonance. Vol. 8. Plenum Press, New York

    Book  Google Scholar 

  26. Fajer PG (2000) Electron spin resonance spectroscopy labeling in peptide and protein analysis. In: Meyers RA (ed) Encycl Anal Chem. Wiley, Chichester, pp 5725–5761

    Google Scholar 

  27. Bender CJ, Berliner LJ (2006) Computational and instrumental methods in EPR. Biological magnetic resonance 25. Springer Science, New York

    Google Scholar 

  28. Fanucci GE, Cafiso DS (2006) Recent advances and applications of site-directed spin labeling. Curr Opin Struct Biol 16:644–653

    Article  CAS  Google Scholar 

  29. White GF, Ottignon L, Georgiou T, Kleanthous C, Moore GR, Thomson AJ, Oganesyan VS (2007) Analysis of spin label motion in a protein–protein complex using multiple frequency EPR spectroscopy. J Magn Res 185:191–203

    Article  CAS  Google Scholar 

  30. Klare JP, Steinhoff H-J (2009) Spin labeling EPR. Photosynth Res 102:377–390

    Article  CAS  Google Scholar 

  31. Drescher M (2012) EPR in protein science: intrinsically disordered proteins. Top Curr Chem 321:91–120

    Article  CAS  Google Scholar 

  32. Hubbell WL, Lopez CJ, Altenbach C, Yang Z (2013) Technological advances in site-directed spin labeling of proteins. Curr Opin Struc Biol 23:1–9

    Article  Google Scholar 

  33. Hewgley PB, Puett D (1980) Spin labeled calmodulin: a new probe for studying Ca2+ and macromolecular interactions. Ann NY Acad Sci 356:20–32

    Article  CAS  Google Scholar 

  34. Giedroc DP, Ling N, Puett D (1983) Identification of β-endorphin residues 14–25 as a region involved in the inhibition of calmodulin-stimulated phosphodiesterase activity. Biochemistry 22:5584–5591

    Article  CAS  Google Scholar 

  35. Siegel N, Coughlin R, Haug A (1983) A thermodynamic and electron paramagnetic resonance study of structural changes in calmodulin induced by aluminum binding. Biochem Biophys Res Commun 115:512–517

    Article  CAS  Google Scholar 

  36. Xu YH, Gietzen K, Galla H-J (1983) Electron paramagnetic resonance study of calmodulin: conformational change and interaction with divalent cations. Int J Biol Macromol 5:154–158

    Article  CAS  Google Scholar 

  37. Jackson AE, Puett D (1984) Specific acylation of calmodulin: synthesis and adduct formation with a fluorenyl-based spin label. J Biol Chem 259:14985–14992

    CAS  Google Scholar 

  38. Nieves J, Kim L, Puett D, Echegoyen L, Benabe J, Martinez-Maldonado M (1987) Electron spin resonance of calmodulin–vanadyl complexes. Biochemistry 26:4523–4527

    Article  CAS  Google Scholar 

  39. Buccigross JM, Nelson DJ (1988) Interactions of spin-labeled calmodulin with trifluoperazine and phosphodiesterase in the presence of Ca(II), Cd(II), La(III), Tb(III), and Lu(III). J Inorg Biochem 33:139–147

    Article  CAS  Google Scholar 

  40. You G, Nelson DJ (1991) Al3+ versus Ca2+ ion binding to methionine and tyrosine spin-labeled bovine brain calmodulin. J Inorg Biochem 41:283–291

    Article  CAS  Google Scholar 

  41. Yacko MA, Vanaman TC, Butterfield DA (1991) Spin labeling studies of wheat germ calmodulin in solution. Biochim Biophys Acta 1064:7–12

    Article  CAS  Google Scholar 

  42. Yacko MA, Butterfield DA (1992) Spin-labeling studies of the conformation of the Ca2+regulatory protein calmodulin in solution and bound to the membrane skeleton in erythrocyte ghosts: implications to transmembrane signaling. Biophys J 63:317–322

    Article  CAS  Google Scholar 

  43. Zhou YA, Li Y, Wang ZG, Ou YH, Zhou X (1994) 1H NMR and spin-labeled EPR studies on the interaction of calmodulin with jujuboside A. Biochem Biophys Res Commun 202:148–154

    Article  CAS  Google Scholar 

  44. Qin Z, Squier TC (2001) Calcium-dependent stabilization of the central sequence between Met76 and Ser81 in vertebrate calmodulin. Biophys J 81:2908–2918

    Article  CAS  Google Scholar 

  45. Shao J, Cieslak J, Gross A (2009) Generation of a calmodulin-based EPR calcium indicator. Biochemistry 48:639–644

    Article  CAS  Google Scholar 

  46. Qin Z, Wertz SL, Jacob J, Savini Y, Cafiso DS (1996) Defining protein–protein interactions using site-directed spin-labeling: the binding of protein kinase C substrates to calmodulin. Biochemistry 35:13272–13276

    Article  CAS  Google Scholar 

  47. Tombolato F, Ferrarini A, Freed JH (2006) Modeling the effects of structure and dynamics of the nitroxide side chain on the ESR spectra of spin-labeled proteins. J Phys Chem 110:26260–26271

    Article  CAS  Google Scholar 

  48. Likhtenshtein GI, Yamauchi J, Nakatsuji S, Smirnov AI, Tamura R (eds) (2008) Nitroxides: Applications in Chemistry, Biomedicine, and Materials Science. Wiley-VCH Verlag GmbH & Co, KGaA, Weinheim

    Google Scholar 

  49. Nesmelov YE, Thomas DD (2010) Protein structural dynamics revealed by site-directed labeling and multifrequency EPR. Biophys Rev 2:91–99

    Article  CAS  Google Scholar 

  50. Jeschke G (2013) Conformational dynamics and distribution of nitroxide spin labels. Prog Nucl Magn Reson Spectrosc 72:42–60

    Article  CAS  Google Scholar 

  51. Rybalkin SD, Hinds TR, Beavo JA (2013) Enzyme assays for cGMP hydrolyzing phosphodiesterases. In: Krieg T, Lukowski R (eds) Guanylate cyclase and cyclic GMP. Humana Press/Springer. Methods Mol Biol 1020: 51–62

  52. Kosman DJ (1972) Electron paramagnetic resonance probing of macromolecules: a comparison of structure/function relationships in chymotrypsinogen, α-chymotrypsin and anhydrochymotrypsin. J Mol Biol 67:247–264

    Article  CAS  Google Scholar 

  53. Likhtenshtein GI (1976) Spin Labeling Methods in Molecular Biology. Wiley, New York, New York, pp 24–29. Shelnitz PS (translator). Originally published in 1974 by Isdatel stvo Nauka, Moscow, Russia

  54. Lin K, Yang H, Gao Z, Li F, Yu S (2013) Overestimated accuracy of circular dichroism in determining protein secondary structure. Eur Biophys J 42:455–461

    Article  CAS  Google Scholar 

  55. O`Donnell SE, Newman RA, Witt TJ, Hultman R, Froehlig JR, Christensen AP, Shea MA (2009) Thermodynamics and conformational change governing domain–domain interactions of calmodulin. Methods Enzymol 466:503–526

    Article  CAS  Google Scholar 

  56. Musci G, Koga K, Berliner LJ (1988) Methionine-90-spin-labeled bovine α-lactalbumin: electron spin resonance and NMR distance measurements. Biochemistry 27:1260–1265

    Article  CAS  Google Scholar 

  57. Rabenstein MD, Shin Y-K (1995) Determination of the distance between two spin labels attached to a macromolecule. Proc Natl Acad Sci 92:8239–8243

    Article  CAS  Google Scholar 

  58. Mchaourab HS, Oh KJ, Fang CJ, Hubbell WL (1997) Conformation of T4 lysozyme in solution: Hinge-bending motion and the substrate-induced conformational transition studied by site-directed spin labeling. Biochemistry 36:307–316

    Article  CAS  Google Scholar 

  59. Berliner LJ, Eaton SS, Eaton GR (2000) Distance measurements in biological systems by EPR. Biological magnetic resonance. Vol. 19. Kluwer Acedemic/Plenum Publishing, New York

    Google Scholar 

  60. Pyka J, Ilnicki J, Altenbach C, Hubbell WL, Froncisz W (2005) Accessibility and dynamics of nitroxide side chains in T4 lysozyme measured by saturation recovery EPR. Biophys J 89:2059–2068

    Article  CAS  Google Scholar 

  61. Altenbach C, Froncisz W, Hemker R, Mchaourab H, Hubbell WL (2005) Accessibility of nitroxide side chains: absolute Heisenberg exchange rates from power saturation EPR. Biophys J 89:2103–2112

    Article  CAS  Google Scholar 

  62. Walsh M, Stevens FC (1977) Chemical modification studies on the Ca2+ ion-dependent protein modulator of cyclic nucleotide phosphodiesterase. Biochemistry 16:2742–2749

    Article  CAS  Google Scholar 

  63. Walsh M, Stevens FC (1978) Chemical modification studies on the Ca2+-dependent protein modulator: the role of methionine residues in the activation of cyclic nucleotide phosphodiesterase. Biochemistry 17:3924–3930

    Article  CAS  Google Scholar 

  64. Yuan T, Ouyang H, Vogel HJ (1999) Surface exposure of the methionine side chains of calmodulin in solution. J Biol Chem 274:8411–8420

    Article  CAS  Google Scholar 

  65. Yao Y, Yin D, Jas GS, Kuczera K, Williams TD, Schoneich C, Squier TC (1996) Oxidative modification of a carboxyl-terminal vicinal methionine in calmodulin by hydrogen peroxide inhibits calmodulin-dependent activation of the plasma membrane Ca-ATPase. Biochemistry 35:2767–2787

    Article  CAS  Google Scholar 

  66. Lim JC, Kim G, Levine RL (2013) Stereospecific oxidation of calmodulin by methionine sulfoxide reductase A. Free Rad Biol Med 61:257–264

    Article  CAS  Google Scholar 

  67. Siivari K, Zhang M, Palmer AG III, Vogel HJ (1995) NMR studies of the methionine methyl groups in calmodulin. FEBS Lett 366:104–108

    Article  CAS  Google Scholar 

  68. Drum CL, Yan S-Z, Bard J, Shen Y-Q, Lu D, Soelaiman S, Grabarek Z, Bohm A, Tang W-J (2002) Structural basis for the activation of anthrax adenylyl cyclase exotoxin by calmodulin. Nature 415:396–492

    Article  CAS  Google Scholar 

  69. Yamada Y, Matsuo T, Iwamoto H, Yagi N (2012) A compact intermediate state of calmodulin in the process of target binding. Biochemistry 51:3963–3970

    Article  CAS  Google Scholar 

  70. Chimera (2013) [www.cgl.ucsf.edu/chimera/]

Download references

Acknowledgments

We are most appreciative of the helpful comments, suggestions, and assistance from Professors Malcolm Forbes (University of North Carolina), William Lanzilotta (University of Georgia), John Rose (University of Georgia), Alex Smirnov (North Carolina State University), and Zachary Wood (University of Georgia). We also thank Professor Albert Beth (Vanderbilt University) for helpful discussions and for obtaining EPR spectra of precipitated spin-labeled calmodulin. Lastly, a special thanks to Mr. Edward Larry Bowman for his invaluable assistance in preparing the figures and to Mr. Connor Puett for his expert help. This research was supported by the National Institutes of Health (Grants DK33973, GM35415, GM07319, and RR05424).

Conflict of interest

The authors declare no conflict of interest.

Ethical standards

The experiments presented herein comply with the current laws of the USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Puett.

Additional information

Paula B. Bowman was formerly known as Paula B. Hewgley.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 149 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bowman, P.B., Puett, D. Electron Paramagnetic Resonance Spectroscopy of Nitroxide-Labeled Calmodulin. Protein J 33, 267–277 (2014). https://doi.org/10.1007/s10930-014-9559-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-014-9559-9

Keywords

Navigation