Skip to main content
Log in

Molten Globule-Triggered Inactivation of a Thermostable and Solvent Stable Lipase in Hydrophilic Solvents

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

The use of lipase in hydrophilic solvent is usually hampered by inactivation. The solvent stability of a recombinant solvent stable lipase isolated from thermostable Bacillus sp. strain 42 (Lip 42), in DMSO and methanol were studied at different solvent-water compositions. The enzymatic activities were retained in up to 45% v/v solvent compositions. The near-UV CD spectra indicated that tertiary structures were perturbed at 60% v/v and above. Far-UV CD in methanol indicated the secondary structure in Lip 42 was retained throughout all solvent compositions. Fluorescence studies indicated formations of molten globules in solvent compositions of 60% v/v and above. The enzyme was able to retain its secondary structures in the presence of methanol; however, there was a general reduction in β-sheet and an increase in α-helix contents. The H-bonding arrangements triggered in methanol and DMSO, respectively, caused different forms of tertiary structure perturbations on Lip 42, despite both showing partial denaturation with molten globule formations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ANS:

8-Anilino-1-napthalene sulphonic acid

DMSO:

Dimethyl sulfoxide

UV CD:

Ultra violet circular dichroism

MG:

Molten globule

Phe:

Residue phenylalanine

Trp:

Residue tryptophan

Tyr:

Residue tyrosine

References

  1. Adlercreutz P, Klibanov AM (1996) Black academy and professional. Glasgow, pp 9–42

  2. Almarsson O, Klibanov AM (1996) Biotechnol Bioeng 49:87–92

    Article  CAS  Google Scholar 

  3. Arakawa T, Kita Y, Timasheff SN (2007) Biophys Chem 13:62–70

    Article  Google Scholar 

  4. Ashgari SMA, Khajeh K, Moradian F, Ranjbar B, Naderi-Manesh H (2004) Enzyme Microb Technol 35:51–57

    Article  Google Scholar 

  5. Borén K, Andersson P, Larsson M, Carlsson U (1999) Biochim Biophys Acta 1430:111–118

    Google Scholar 

  6. Castillo E, Pezzotti F, Navarro A, L′opez-Munguia A (2003) J Biotechnol 102:251–259

    Article  CAS  Google Scholar 

  7. Chenal A, Nizard P, Forge V, Pugnière M, Roy M-O, Mani J-C, Guillain F, Gillet D (2002) Protein Eng 15:383–391

    Article  CAS  Google Scholar 

  8. Cramer JF, Dueholm MS, Nielsen SB, Dorte S, Pedersen DS, Wimmer R, Pedersen LH (2007) Enzyme Microb Technol 41:346–352

    Article  CAS  Google Scholar 

  9. Eltaweel MA, Rahman RNZ, Salleh AB, Basri M (2005) Ann Microbiol 55:187–192

    CAS  Google Scholar 

  10. Fan H, Kitagawa M, Raku T, Tokiwa Y (2004) Biotechnol Lett 26:1261–1264

    Article  CAS  Google Scholar 

  11. Ferrer M, Cruces MA, Bernabé M, Ballesteros A, Plou FJ (1999) Biotechnol Bioeng 65:10–15

    Article  CAS  Google Scholar 

  12. Ferrer M, Soliveri J, Plou FJ, Lopez-Cortes N, Reyes-Duarte D, Christensen M, Copa-Patino JL, Ballesteros A (2005) Enzyme Microb Technol 36:391–398

    Article  CAS  Google Scholar 

  13. Hamid THA, Rahman RNZRA, Basri M, Salleh AB (2009) Biotechnol Biotech Eq 23(4):1524–1530

    Article  Google Scholar 

  14. Hamid THTA, Eltaweel MA, Rahman RNZA, Basri M, Salleh AB (2009) Ann Microbiol 59(1):111–118

    Article  Google Scholar 

  15. Jiang JX, London ER (1990) J Biol Chem 265:8636–8641

    CAS  Google Scholar 

  16. Kamatari YO, Konno T, Kataoka M, Akasaka K (1999) J Mol Biol 259:512–523

    Article  Google Scholar 

  17. Krishna SH (2002) Biotechnol Adv 20:239–267

    Article  Google Scholar 

  18. Kwon DY, Rhee JS (1986) J Am Oil Chem Soc 63:89–92

    Article  CAS  Google Scholar 

  19. Leow TC, Rahman RNZA, Basri M, Salleh AB (2004) Biosci Biotechnol Biochem 68:96–103

    Article  CAS  Google Scholar 

  20. Leow TC, Rahman RNZRA, Basri M, Salleh AB (2007) Extremophile 11(3):527–535

    Article  CAS  Google Scholar 

  21. Lopez R, Montero E, Sanchez F, Canada J, Fernández-Mayoralas A (1994) J Org Chem 59:7027–7032

    Article  CAS  Google Scholar 

  22. MacManus DA, Vulfson EN (1997) Enzyme Microb Technol 20:225–228

    Article  CAS  Google Scholar 

  23. Manavalan P, Johnson WC Jr (1983) Nature 305:831–832

    Article  CAS  Google Scholar 

  24. Mårtensson L-G, Jonsson B-H, Freskgård PO, Kihlgren A, Svensson M, Carlsson U (1993) Biochemistry 32:224–231

    Article  Google Scholar 

  25. Neyroz P, Zambelli B, Ciurli S (2006) Biochemistry 45:8918–8930

    Article  CAS  Google Scholar 

  26. Ogino H, Yasui K, Shiotani T, Ishihara T, Ishikawa H (1995) Appl Environ Microbiol 61:4258–4262

    CAS  Google Scholar 

  27. Patti A, Piattelli M, Nicolosi G (2000) J Mol Catal B: Enzym 10:577–582

    Article  CAS  Google Scholar 

  28. Plou FJ, Cruces MA, Ferrer M, Fuentes G, Pastor E, Bernabé M, Christensen M, Comelles F, Parra JL, Ballesteros A (2002) J Biotechnol 96:55–66

    Article  CAS  Google Scholar 

  29. Punchihewa C, Dai J, Carver M, Yang D (2007) J Struct Biol 159:111–121

    Article  CAS  Google Scholar 

  30. Rahman RNZA, Hamid THTA, Eltaweel MA, Basri M, Salleh AB (2008) J Biotechnol 136(1):S335

    Article  Google Scholar 

  31. Reiner A, Wildemann D, Fischer G, Kiefhaber T (2008) J Am Chem Soc 130(25):8079–8084

    Article  CAS  Google Scholar 

  32. Rich JO, Bedell BA, Dordick JS (1995) Biotechnol Bioeng 45:426–434

    Article  CAS  Google Scholar 

  33. Rubio E, Fenández-Mayorales A, Kilbanov AM (1991) J Am Chem Soc 113:695–696

    Article  CAS  Google Scholar 

  34. Sekhon A, Dahiya N, Tiwari RP, Hoondal GS (2005) J Basic Microbiol 45:147–154

    Article  CAS  Google Scholar 

  35. Sellek GA, Chaudhuri JB (1999) Enzyme Microb Techno 25:471–482

    Article  CAS  Google Scholar 

  36. Shcmid F, Buchner J, Kiefhaber T (2005) Wiley-VCH Verlag, Weinheim, pp 112

  37. Therisod M, Klibanov AM (1986) J Am Chem Soc 108:5638–5640

    Article  CAS  Google Scholar 

  38. Thomas PD, Dill KA (1993) Protein Sci 2:2050–2065

    Article  CAS  Google Scholar 

  39. Tsuzuki W, Ue A, Kitamura Y (2001) Biosci Biotechnol Biochem 65:20–2078

    Article  Google Scholar 

  40. Uversky VN, Narizhneva NV, Kirschstein SO, Winter S, Löber G (1997) Fold Des 2:63–172

    Article  Google Scholar 

  41. Youn SH, Kim HJ, Kim TH, Shin CS (2007) J Mol Catal B: Enzym 46:26–31

    Article  CAS  Google Scholar 

  42. Wesott RC, Klibanov AM (1993) Biochim Biophys Acta 1206:1–9

    Google Scholar 

Download references

Acknowledgments

This project was funded by the Ministry of Higher Education Malaysia (MOHE) under The Fundamental Research Grant Scheme (FRGS) (project number 01-01-07-009FR) and Tengku Haziyamin Tengku Abdul Hamid was supported by International Islamic University Malaysia for personal allowances.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raja Noor Zaliha Raja Abd Rahman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hamid, T.H.T.A., Rahman, R.N.Z.R.A., Salleh, A.B. et al. Molten Globule-Triggered Inactivation of a Thermostable and Solvent Stable Lipase in Hydrophilic Solvents. Protein J 29, 290–297 (2010). https://doi.org/10.1007/s10930-010-9251-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-010-9251-7

Keywords

Navigation