Skip to main content
Log in

Impact of aminophylline on the pharmacodynamics of propofol in beagle dogs

  • Original Paper
  • Published:
Journal of Pharmacokinetics and Pharmacodynamics Aims and scope Submit manuscript

Abstract

This study aimed to characterize pharmacodynamic interaction between propofol and aminophylline. Nine beagle dogs were randomly allocated at the propofol rates of 0.75 (group A), 1.00 (group B), and 1.25 (group C) mg/kg/min. During period 1, propofol only was infused, while during period 2, aminophylline only, at the rate of 0.69 (group A), 1.37 (group B), and 2.62 (group C) mg/kg/h. During periods 3–5, the two drugs were co-administered. The aminophylline infusion rate was 0.69 (period 3), 1.37 (period 4), and 2.62 (period 5) mg/kg/h. The aminophylline was infused from 0 to 30 h, and the propofol was infused at 24 h for 20 min. Blood samples and electroencephalograms were obtained at preset intervals. In the linear regression between log-transformed doses of aminophylline and AUC inf , the slope was 0.6976 (95 % CI 0.5242–0.8710). Pharmacokinetics of aminophylline was best described by a one-compartment, with enzyme auto-induction, model. Pharmacokinetics and pharmacodynamics of propofol were best described by a three-compartment model and a sigmoid E max model, respectively. Pharmacodynamic parameter estimates of propofol were: k e0 = 0.805/min, E 0 = 0.76, E max  = 0.398, Ce 50 na  = 2.38 μg/mL (without aminophylline-exposure), Ce 50 wa  = 4.49 μg/mL (with aminophylline-exposure), and γ = 2.21. Propofol becomes less potent when exposed to aminophylline. Pharmacodynamic antagonistic interaction of aminophylline with propofol sedation, may occur, not in a dose-dependent manner, but in an all-or-none response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Amabeoku GJ (1999) Gamma-aminobutyric acid and glutamic acid receptors may mediate theophylline-induced seizures in mice. Gen Pharmacol 32:365–372

    Article  CAS  PubMed  Google Scholar 

  2. Bruhn J, Bouillon TW, Hoeft A, Shafer SL (2002) Artifact robustness, inter- and intraindividual baseline stability, and rational EEG parameter selection. Anesthesiology 96:54–59

    Article  PubMed  Google Scholar 

  3. Carrasco G, Molina R, Costa J, Soler JM, Cabre L (1993) Propofol vs midazolam in short-, medium-, and long-term sedation of critically ill patients. A cost-benefit analysis. Chest 103:557–564

    Article  CAS  PubMed  Google Scholar 

  4. Czuczwar SJ, Ikonomidou C, Kleinrok Z, Turski L, Turski W (1986) Effect of aminophylline on the protective action of common antiepileptic drugs against electroconvulsions in mice. Epilepsia 27:204–208

    Article  CAS  PubMed  Google Scholar 

  5. Efron B, Tibshirani R (1986) Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy. Statist Sci 1:54–75

    Article  Google Scholar 

  6. Favetta P, Degoute CS, Perdrix JP, Dufresne C, Boulieu R, Guitton J (2002) Propofol metabolites in man following propofol induction and maintenance. Br J Anaesth 88:653–658

    Article  CAS  PubMed  Google Scholar 

  7. Finer NN, Barrington KJ, Hayes B (1992) Prolonged periodic breathing: significance in sleep studies. Pediatrics 89:450–453

    CAS  PubMed  Google Scholar 

  8. Hendeles L, Weinberger M (1983) Theophylline. A “state of the art” review. Pharmacotherapy 3:2–44

    CAS  PubMed  Google Scholar 

  9. Hoegholm A, Steptoe P, Fogh B, Caldara A, Pedersen C (1989) Benzodiazepine antagonism by aminophylline. Acta Anaesthesiol Scand 33:164–166

    Article  CAS  PubMed  Google Scholar 

  10. Hooker AC, Staatz CE, Karlsson MO (2007) Conditional weighted residuals (CWRES): a model diagnostic for the FOCE method. Pharm Res 24:2187–2197

    Article  CAS  PubMed  Google Scholar 

  11. Huang ZL, Qu WM, Eguchi N, Chen JF, Schwarzschild MA, Fredholm BB et al (2005) Adenosine A2A, but not A1, receptors mediate the arousal effect of caffeine. Nat Neurosci 8:858–859

    Article  CAS  PubMed  Google Scholar 

  12. Hupfl M, Schmatzer I, Buzath A, Burger H, Horauf K, Ihra G et al (2008) The effects of aminophylline on bispectral index during inhalational and total intravenous anaesthesia. Anaesthesia 63:583–587

    Article  CAS  PubMed  Google Scholar 

  13. Jenne JW, Nagasawa HT, Thompson RD (1976) Relationship of urinary metabolites of theophylline to serum theophylline levels. Clin Pharmacol Ther 19:375–381

    CAS  PubMed  Google Scholar 

  14. Jolley ME (1981) Fluorescence polarization immunoassay for the determination of therapeutic drug levels in human plasma. J Anal Toxicol 5:236–240

    Article  CAS  PubMed  Google Scholar 

  15. Kansaku F, Kumai T, Sasaki K, Yokozuka M, Shimizu M, Tateda T et al (2011) Individual differences in pharmacokinetics and pharmacodynamics of anesthetic agent propofol with regard to CYP2B6 and UGT1A9 genotype and patient age. Drug Metab Pharmacokinet 26:532–537

    Article  CAS  PubMed  Google Scholar 

  16. Karlsson MO, Savic RM (2007) Diagnosing model diagnostics. Clin Pharmacol Ther 82:17–20

    Article  CAS  PubMed  Google Scholar 

  17. Kerbusch T, Huitema AD, Ouwerkerk J, Keizer HJ, Mathot RA, Schellens JH et al (2000) Evaluation of the autoinduction of ifosfamide metabolism by a population pharmacokinetic approach using NONMEM. Br J Clin Pharmacol 49:555–561

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Koizumi S, Saito K, Murashima YL, Kawakami Y (2010) Theophylline-induced changes in mouse electroencephalograms. Brain Dev 32:818–820

    Article  PubMed  Google Scholar 

  19. Krintel JJ, Wegmann F (1987) Aminophylline reduces the depth and duration of sedation with barbiturates. Acta Anaesthesiol Scand 31:352–354

    Article  CAS  PubMed  Google Scholar 

  20. Kulkarni C, Vaz J, David J, Joseph T (1995) Aminophylline alters pharmacokinetics of carbamazepine but not that of sodium valproate–a single dose pharmacokinetic study in human volunteers. Indian J Physiol Pharmacol 39:122–126

    CAS  PubMed  Google Scholar 

  21. Lee EH, Lee SH, Park DY, Ki KH, Lee EK, Lee DH et al (2008) Physicochemical properties, pharmacokinetics, and pharmacodynamics of a reformulated microemulsion propofol in rats. Anesthesiology 109:436–447

    Article  CAS  PubMed  Google Scholar 

  22. Lee SH, Ghim JL, Song MH, Choi HG, Choi BM, Lee HM et al (2009) Pharmacokinetics and pharmacodynamics of a new reformulated microemulsion and the long-chain triglyceride emulsion of propofol in beagle dogs. Br J Pharmacol 158:1982–1995

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Liguori MJ, Lee CH, Liu H, Ciurlionis R, Ditewig AC, Doktor S et al (2012) AhR activation underlies the CYP1A autoinduction by A-998679 in rats. Front Genet 3:213

    Article  PubMed Central  PubMed  Google Scholar 

  24. Luszczki JJ, Jankiewicz K, Jankiewicz M, Czuczwar SJ (2007) Pharmacokinetic and pharmacodynamic interactions of aminophylline and topiramate in the mouse maximal electroshock-induced seizure model. Eur J Pharmacol 562:53–59

    Article  CAS  PubMed  Google Scholar 

  25. Marrosu F, Marchi A, De Martino MR, Saba G, Gessa GL (1985) Aminophylline antagonizes diazepam-induced anesthesia and EEG changes in humans. Psychopharmacology 85:69–70

    Article  CAS  PubMed  Google Scholar 

  26. Mekhail-Ishak K, Lavoie PA, Sharkawi M (1987) Effects of caffeine and cyclic adenosine 3′,5′-monophosphate on adenosine triphosphate-dependent calcium uptake by lysed brain synaptosomes. Brain Res 426:62–68

    Article  CAS  PubMed  Google Scholar 

  27. Mengozzi G, Intorre L, Bertini S, Giorgi M, Soldani G (1998) Comparative bioavailability of two sustained-release theophylline formulations in the dog. Pharmacol Res 38:481–485

    Article  CAS  PubMed  Google Scholar 

  28. Mertens MJ, Olofsen E, Burm AG, Bovill JG, Vuyk J (2004) Mixed-effects modeling of the influence of alfentanil on propofol pharmacokinetics. Anesthesiology 100:795–805

    Article  CAS  PubMed  Google Scholar 

  29. Morikawa A, Nishima S (2007) New Japanese pediatric guidelines for the treatment and management of bronchial asthma. Pediatr Int 49:1023–1031

    Article  CAS  PubMed  Google Scholar 

  30. Noh GJ, Kim KM, Jeong YB, Jeong SW, Yoon HS, Jeong SM et al (2006) Electroencephalographic approximate entropy changes in healthy volunteers during remifentanil infusion. Anesthesiology 104:921–932

    Article  CAS  PubMed  Google Scholar 

  31. Parke J, Holford NH, Charles BG (1999) A procedure for generating bootstrap samples for the validation of nonlinear mixed-effects population models. Comput Methods Programs Biomed 59:19–29

    Article  CAS  PubMed  Google Scholar 

  32. Pellegrino FC, Sica RE (2004) Canine electroencephalographic recording technique: findings in normal and epileptic dogs. Clin Neurophysiol 115:477–487

    Article  PubMed  Google Scholar 

  33. Rainnie DG, Grunze HC, McCarley RW, Greene RW (1994) Adenosine inhibition of mesopontine cholinergic neurons: implications for EEG arousal. Science 263:689–692

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Rutherford JD, Vatner SF, Braunwald E (1981) Effects and mechanism of action of aminophylline on cardiac function and regional blood flow distribution in conscious dogs. Circulation 63:378–387

    Article  CAS  PubMed  Google Scholar 

  35. Sakurai S, Fukunaga A, Fukuda K, Kasahara M, Ichinohe T, Kaneko Y (2008) Aminophylline reversal of prolonged postoperative sedation induced by propofol. J Anesth 22:86–88

    Article  PubMed  Google Scholar 

  36. Self TH, Heilker GM, Alloway RR, Kelso TM, Abou-Shala N (1993) Reassessing the therapeutic range for theophylline on laboratory report forms: the importance of 5–15 micrograms/mL. Pharmacotherapy 13:590–594

    CAS  PubMed  Google Scholar 

  37. Shibata M, Wachi M, Kagawa M, Kojima J, Onodera K (2000) Acute and subacute toxicities of theophylline are directly reflected by its plasma concentration in dogs. Methods Find Exp Clin Pharmacol 22:173–178

    Article  CAS  PubMed  Google Scholar 

  38. Stirt JA (1983) Aminophylline may act as a morphine antagonist. Anaesthesia 38:275–278

    Article  CAS  PubMed  Google Scholar 

  39. Taylor BL, Collins C (1988) Aminophylline and propofol: apparent antagonism. Anaesthesia 43:508

    Article  CAS  PubMed  Google Scholar 

  40. Thakkar MM, Winston S, McCarley RW (2003) A1 receptor and adenosinergic homeostatic regulation of sleep-wakefulness: effects of antisense to the A1 receptor in the cholinergic basal forebrain. J Neurosci 23:4278–4287

    CAS  PubMed Central  PubMed  Google Scholar 

  41. Turan A, Memis D, Karamanlyodthlu B, Pamukcu Z, Sut N (2004) Effect of aminophylline on bispectral index. Acta Anaesthesiol Scand 48:408–411

    Article  CAS  PubMed  Google Scholar 

  42. Turan A, Kasuya Y, Govinda R, Obal D, Rauch S, Dalton JE et al (2010) The effect of aminophylline on loss of consciousness, bispectral index, propofol requirement, and minimum alveolar concentration of desflurane in volunteers. Anesth Analg 110:449–454

    Article  CAS  PubMed  Google Scholar 

  43. Wahlby U, Jonsson EN, Karlsson MO (2001) Assessment of actual significance levels for covariate effects in NONMEM. J Pharmacokinet Pharmacodyn 28:231–252

    Article  CAS  PubMed  Google Scholar 

  44. Weinberger M, Hendeles L (1996) Theophylline in asthma. N Engl J Med 334:1380–1388

    Article  CAS  PubMed  Google Scholar 

  45. Yafune A, Ishiguro M (1999) Bootstrap approach for constructing confidence intervals for population pharmacokinetic parameters. I: a use of bootstrap standard error. Stat Med 18:581–599

    Article  CAS  PubMed  Google Scholar 

  46. Zhu BT (2010) On the general mechanism of selective induction of cytochrome P450 enzymes by chemicals: some theoretical considerations. Expert Opin Drug Metab Toxicol 6:483–494

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Ae-Kyung Hwang, B.S. (technician), Hyun-Jeong Park, B.S. (technician), and A-rum Kim, B.S. (technician) from the Clinical Research Center of Asan Medical Center (Seoul, Korea) for measuring plasma concentrations of propofol. This work was supported by the Student Research Grant (12-13) of University of Ulsan College of Medicine and Grant No. 2010-301 from the Asan Institute for Life Sciences, Seoul, Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gyu-Jeong Noh.

Additional information

S-H. Lee and H-J. Kang contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, SH., Kang, HJ., Jin, SJ. et al. Impact of aminophylline on the pharmacodynamics of propofol in beagle dogs. J Pharmacokinet Pharmacodyn 41, 599–612 (2014). https://doi.org/10.1007/s10928-014-9377-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10928-014-9377-x

Keywords

Navigation