Skip to main content
Log in

Effect of Starch-MWCNT@Valine Nanocomposite on the Optical, Morphological, Thermal, and Adsorption Properties of Chitosan

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

The overall goal of this research was to develop a practical method for improving chitosan (Chit) properties using Starch-MWCNT@Valine (SMV) nanocomposite (NC) as a new filler. To prevent aggregation and also improve the dispersion of MWCNTs into the chit matrix, first the surface of MWCNTs was covalently modified by valine as a natural amino acid. Then modified MWCNT was embedded into starch matrix for the preparation of SMV NC. In the second step, the desire amount of prepared SMV NC (30, 50 and 70 wt%) were incorporated into the chit matrix by ultrasonication technique for the fabrication of Chit/Starch-MWCNT@Valine NC films. The resulting NC films were characterized using different techniques. Thermogravimetric analysis results illustrated that the thermal stability of NC 70 wt% in comparison to the pure chit was enhanced. The results indicated that prepared NCs were promising adsorbents for the removal of Cd(II) ions from the aqueous solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Carson L, Kelly-Brown C, Stewart M, Oki A, Regisford G, Luo Z, Bakhmutov VI (2009) Synthesis and characterization of chitosan–carbon nanotube composites. Mater Lett 63(6):617–620

    Article  CAS  Google Scholar 

  2. Tang C, Chen N, Zhang Q, Wang K, Fu Q, Zhang X (2009) Preparation and properties of chitosan nanocomposites with nanofillers of different dimensions. Polym Degrad Stab 94(1):124–131

    Article  CAS  Google Scholar 

  3. Mallakpour S, Madani M (2015) Enhanced interfacial interaction for effective reinforcement of chitosan nanocomposites at different loading of modified multiwalled carbon nanotubes with vitamin C. J Elastomers Plast. doi:10.1177/0095244315613618

    Google Scholar 

  4. Justin R, Chen B (2014) Characterisation and drug release performance of biodegradable chitosan–graphene oxide nanocomposites. Carbohydr Polym 103:70–80

    Article  CAS  Google Scholar 

  5. Marroquin JB, Rhee K, Park S (2013) Chitosan nanocomposite films: enhanced electrical conductivity, thermal stability, and mechanical properties. Carbohydr Polym 92(2):1783–1791

    Article  CAS  Google Scholar 

  6. Giannakas A, Grigoriadi K, Leontiou A, Barkoula N-M, Ladavos A (2014) Preparation, characterization, mechanical and barrier properties investigation of chitosan–clay nanocomposites. Carbohydr Polym 108:103–111

    Article  CAS  Google Scholar 

  7. Sun F, Cha H-R, Bae K, Hong S, Kim J-M, Kim SH, Lee J, Lee D (2011) Mechanical properties of multilayered chitosan/CNT nanocomposite films. Mater Sci Eng A 528(21):6636–6641

    Article  CAS  Google Scholar 

  8. Bello A, Laredo E, Marval JR, Grimau M, Arnal ML, Müller AJ, Ruelle B, Dubois P (2011) Universality and percolation in biodegradable poly (ε-caprolactone)/multiwalled carbon nanotube nanocomposites from broad band alternating and direct current conductivity at various temperatures. Macromolecules 44(8):2819–2828

    Article  CAS  Google Scholar 

  9. Wu F, Yang G (2010) Synthesis and properties of poly (butylene terephthalate)/multiwalled carbon nanotube nanocomposites prepared by in situ polymerization and in situ compatibilization. J Appl Polym Sci 118(5):2929–2938

    Article  CAS  Google Scholar 

  10. Lee H-H, Shin U-S, Jin G-Z, Kim H-W (2011) Highly homogeneous carbon nanotube-polycaprolactone composites with various and controllable concentrations of ionically-modified-MWCNTs. Bull Korean Chem Soc 32(1):157–161

    Article  CAS  Google Scholar 

  11. Jeon J-H, Lim J-H, Kim K-M (2009) Fabrication of hybrid nanocomposites with polystyrene and multiwalled carbon nanotubes with well-defined polystyrene via multiple atom transfer radical polymerization. Polymer 50(19):4488–4495

    Article  CAS  Google Scholar 

  12. Mallakpour S, Zadehnazari A (2014) A facile, efficient, and rapid covalent functionalization of multi-walled carbon nanotubes with natural amino acids under microwave irradiation. Prog Org Coat 77(3):679–684

    Article  CAS  Google Scholar 

  13. García N, Famá L, D’Accorso N, Goyanes S (2015) Biodegradable starch nanocomposites. In: Eco-friendly polymer nanocomposites, advanced structured materials, vol 75. Springer, pp 1–15

  14. Ngah WW, Kamari A, Koay Y (2004) Equilibrium and kinetics studies of adsorption of copper (II) on chitosan and chitosan/PVA beads. Int J Biol Macromol 34(3):155–161

    Article  Google Scholar 

  15. Ngah WW, Teong L, Hanafiah M (2011) Adsorption of dyes and heavy metal ions by chitosan composites: a review. Carbohydr Polym 83(4):1446–1456

    Article  Google Scholar 

  16. Swain SK, Pradhan AK, Sahu HS (2013) Synthesis of gas barrier starch by dispersion of functionalized multiwalled carbon nanotubes. Carbohydr Polym 94(1):663–668

    Article  CAS  Google Scholar 

  17. Yan L, Chang PR, Zheng P (2011) Preparation and characterization of starch-grafted multiwall carbon nanotube composites. Carbohydr Polym 84(4):1378–1383

    Article  CAS  Google Scholar 

  18. Chang PR, Zheng P, Liu B, Anderson DP, Yu J, Ma X (2011) Characterization of magnetic soluble starch-functionalized carbon nanotubes and its application for the adsorption of the dyes. J Hazard Mater 186(2):2144–2150

    Article  CAS  Google Scholar 

  19. Mallakpour S, Madani M (2016) p-Amino phenol immobilized on multi-walled carbon nanotubes for the preparation of chitosan nanocomposites. J Compos Mater 50(3):403–411

    Article  CAS  Google Scholar 

  20. López F, Mercê A, Alguacil F, López-Delgado A (2007) A kinetic study on the thermal behaviour of chitosan. J Therm Anal Calorim 91(2):633–639

    Article  Google Scholar 

  21. Aranaz I, Mengíbar M, Harris R, Paños I, Miralles B, Acosta N, Galed G, Heras Á (2009) Functional characterization of chitin and chitosan. Curr Chem Biol 3(2):203–230

    CAS  Google Scholar 

  22. Tehrani MS, Azar PA, Namin PE, Dehaghi SM (2013) Removal of lead ions from wastewater using functionalized multiwalled carbon nanotubes with tris(2-aminoethyl) amine. Earth Environ Sci 4:529–536

    Google Scholar 

  23. Ghorai S, Sinhamahpatra A, Sarkar A, Panda AB, Pal S (2012) Novel biodegradable nanocomposite based on XG-g-PAM/SiO2: application of an efficient adsorbent for Pb2+ ions from aqueous solution. Bioresour Technol 119:181–190

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The Isfahan University of Technology (IUT), Isfahan, National Elite Foundation (NEF), Iran Nanotechnology Initiative Council (INIC), and Center of Excellence in Sensors and Green Chemistry Research (IUT) are gratefully acknowledged for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shadpour Mallakpour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mallakpour, S., Nezamzadeh Ezhieh, A. Effect of Starch-MWCNT@Valine Nanocomposite on the Optical, Morphological, Thermal, and Adsorption Properties of Chitosan. J Polym Environ 25, 875–883 (2017). https://doi.org/10.1007/s10924-016-0874-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-016-0874-4

Keywords

Navigation