Skip to main content
Log in

Biodegradable and Bio-based Green Blends from Carbon Dioxide-Derived Bioplastic and Poly(Butylene Succinate)

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Conventional polymer materials from fossil fuels feature many unresolved questions regarding disposing and future resource availability. To substitute some of the established plastics with bio-based and biodegradable alternatives, new materials have to be developed and researched. The aliphatic biodegradable polyester poly(butylene succinate) offers good material properties and the perspective to be partially bio-based in the future. Poly(propylene carbonate) is an amorphous co-polymer of propylene oxide and carbon dioxide. The incorporation of carbon dioxide in the polymer offers a great way to reduce the excess CO2 levels in the atmosphere and at the same time to add a bio-based component to the plastic. By melt blending and injection molding these two materials, partially bio-based, potentially biodegradable blends are generated. The blends’ mechanical, thermal and morphological properties are studied, using DSC, DMA, TMA, SEM, and FTIR analysis as well as tests regarding impact, flexural and tensile properties. Furthermore, the shrinkage of PPC, PBS and their blends is examined. It was found that blending of these two materials, without any additives or fillers, is not very promising, as almost all mechanical and thermal properties are decreased compared to the neat PBS. However, shrinkage of PPC can be eliminated when added into a PBS matrix and low contents of PPC might offer a possibility to increase the impact toughness of PBS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. PlasticsEurope (2014) http://www.plasticseurope.org/information-centre/press-releases/press-releases-2014/china-leads-global-plastics-production-while-europe-ranks-second.aspx. Accessed 4 Aug 2015

  2. Mohanty AK, Misra M, Hinrichsen G (2000) Macromol Mater Eng 276–277:1–24

    Article  Google Scholar 

  3. Sivan A (2011) Curr Opin Biotechnol 22:422–426

    Article  CAS  Google Scholar 

  4. Kawaguchi T, Nakano M, Juni K, Inoue S, Yoshida Y (1983) Chem Pharm Bull 31:1400–1403

    Article  CAS  Google Scholar 

  5. Ree M, Bae JY, Jung JH, Shin TJ (1999) J Polym Sci 37:1863–1876

    Article  CAS  Google Scholar 

  6. Solomon S, Plattner G-K, Knutti R, Friedlingstein P (2009) Proc Natl Acad Sci USA 106:1704–1709

    Article  CAS  Google Scholar 

  7. Inoue S, Tsuruta T, Takada T, Miyazaki N, Kambe M, Takaoka T (1975) Appl Polym Symp 26:257–267

    CAS  Google Scholar 

  8. Du LC, Meng YZ, Wang SJ, Tjong SC (2004) J Appl Polym Sci 92:1840–1846

    Article  CAS  Google Scholar 

  9. Luinstra GA (2008) Polym Rev 48:192–219

    Article  CAS  Google Scholar 

  10. Jung JH, Ree M, Kim H (2006) Catal Today 115:283–287

    Article  CAS  Google Scholar 

  11. Xu J, Guo B-H (2010) Biotechnol J 5:1149–1163

    Article  CAS  Google Scholar 

  12. Bechthold I, Bretz K, Kabasci S, Kopitzky R, Springer A (2008) Chem Eng Technol 31:647–654

    Article  CAS  Google Scholar 

  13. Song H, Lee SY (2006) Enzyme Microb Technol 39:352–361

    Article  CAS  Google Scholar 

  14. Luinstra GA, Borchardt E (2012) Material properties of poly(propylene carbonates). In: Rieger B, Künkel A, Coates GW et al (eds) Synthetic biodegradable polymers. Springer, Berlin, pp 29–48

    Google Scholar 

  15. Okamatsu T, Kitajima M, Hanazawa H, Ochi M (1999) J Adhes Sci Technol 13:109–125

    Article  CAS  Google Scholar 

  16. Sterzel H-J, Ter Maat JHH, Ebenhoech J, Meyer M (1992) United States Patent US5145900 A

  17. Ramis X, Cadenato A, Salla JM, Morancho JM, Vallés A, Contat L, Ribes A (2004) Polym Degrad Stab 86:483–491

    Article  CAS  Google Scholar 

  18. Ge XC, Xu Y, Meng YZ, Li RKY (2005) Compos Sci Technol 65:2219–2225

    Article  CAS  Google Scholar 

  19. Pang MZ, Qiao JJ, Jiao J, Wang SJ, Xiao M, Meng YZ (2008) J Appl Polym Sci 107:2854–2860

    Article  CAS  Google Scholar 

  20. Lu X-B, Wang Y (2004) Angew Chem Int Ed Engl 43:3574–3577

    Article  CAS  Google Scholar 

  21. Quan Z, Min J, Zhou Q, Xie D, Liu J, Wang X, Zhao X, Wang F (2003) Macromol Symp 195:281–286

    Article  CAS  Google Scholar 

  22. Coates GW, Moore DR (2004) Angew Chem Int Ed Engl 43:6618–6639

    Article  CAS  Google Scholar 

  23. Kim HS, Kim JJ, Lee SD, Lah MS, Moon D, Jang HG (2003) Chemistry 9:678–686

    Article  CAS  Google Scholar 

  24. Li XH, Meng YZ, Zhu Q, Tjong SC (2003) Polym Degrad Stab 81:157–165

    Article  CAS  Google Scholar 

  25. Varghese JK, Na SJ, Park JH, Woo D, Yang I, Lee BY (2010) Polym Degrad Stab 95:1039–1044

    Article  CAS  Google Scholar 

  26. Peng S, An Y, Chen C, Fei B, Zhuang Y, Dong L (2003) Polym Degrad Stab 80:141–147

    Article  CAS  Google Scholar 

  27. Thorat SD, Phillips PJ, Semenov V, Gakh A (2004) J Appl Polym Sci 93:534–544

    Article  CAS  Google Scholar 

  28. Du L, Qu B, Meng Y, Zhu Q (2006) Compos Sci Technol 66:913–918

    Article  CAS  Google Scholar 

  29. Chen W, Pang M, Xiao M, Wang S, Wen L, Meng Y (2009) J Reinf Plast Compos 29:1545–1550

    Article  Google Scholar 

  30. Du FG, Bian SG, Xiao M, Wang SJ, Qiao JJ, Meng YZ (2008) J Polym Eng 28:435–448

    CAS  Google Scholar 

  31. Li XH, Tjong SC, Meng YZ, Zhu Q (2003) J Polym Sci Part B Polym Phys 41:1806–1813

    Article  CAS  Google Scholar 

  32. Kim H-S, Yang H-S, Kim H-J (2005) J Appl Polym Sci 97:1513–1521

    Article  CAS  Google Scholar 

  33. Fujimaki T (1998) Polym Degrad Stab 59:209–214

    Article  CAS  Google Scholar 

  34. Endres H-J, Siebert-Raths A, Behnsen H, Schulz C (2014) Biopolymers facts and statistics. IfBB—Institute for Bioplastics and Biocomposites, Hanover

  35. Dong T, He Y, Zhu B, Shin K-M, Inoue Y (2005) Macromolecules 38:7736–7744

    Article  CAS  Google Scholar 

  36. Empower Materials Inc. http://www.empowermaterials.com/. Accessed 10 Aug 2015

  37. Correlo VM, Boesel LF, Bhattacharya M, Mano JF, Neves NM, Reis RL (2005) Mater Sci Eng A 403:57–68

    Article  Google Scholar 

  38. Phua YJ, Lau NS, Sudesh K, Chow WS, Mohd Ishak ZA (2012) Polym Degrad Stab 97:1345–1354

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the Ontario Ministry of Agriculture Food and Rural Affairs (OMARA)—University of Guelph Bioeconomy-Industrial Uses Research Program (Project # 200369); the Natural Sciences and Engineering Research Council (NSERC), Canada, for the Discovery Grants (Project # 400322); and the Ministry of Research and Innovation (MRI), Ontario Research Fund—Research Excellence Round 4 Program (Project # 050231 and 050289), for their financial support to carry out this research work. Furthermore the authors would like to thank the German Ministry for Science and Culture of Lower Saxony, the Volkswagen Foundation and Niedersächsiches Vorab for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amar K. Mohanty.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Henke, L., Zarrinbakhsh, N., Endres, HJ. et al. Biodegradable and Bio-based Green Blends from Carbon Dioxide-Derived Bioplastic and Poly(Butylene Succinate). J Polym Environ 25, 499–509 (2017). https://doi.org/10.1007/s10924-016-0828-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-016-0828-x

Keywords

Navigation