Skip to main content
Log in

Development of Biodegradable Textile Sizes from Soymeal: A Renewable and Cost-Effective Resource

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Soymeal with high amount of solubles were used as raw materials of low-cost and biodegradable warp sizes, which have higher potential to replace non-biodegradable poly(vinyl alcohol) (PVA) for textile industry. Several protein-based materials have been studied to substitute non-biodegradable PVA sizes and remediate their environmental pollution. However, high cost and/or unsatisfied sizes properties make these protein-based sizes unattractive compared to PVA. In this research, soymeal extractant has been prepared as warp sizes and shown good sizes properties. Films elongation, adhesion, desizing efficiency and biodegradability of the developed soymeal-based sizes were higher than the sizes from physically modified soy protein isolates. Compared to the commercial PVA sizes, soymeal-based sizes showed higher adhesion and desizing efficiency but substantially lower chemical oxygen demand, indicating high potential of soymeal extractant for cleaner warp sizing. In addition, successful utilization of soymeal extractant in textile sizing will lead to value addition of agricultural byproducts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lacasse K, Baumann W (2004) Textile Chemicals: Environmental data and facts. Springer Science & Business Media, Newyork

    Book  Google Scholar 

  2. Reddy N, Chen LH, Zhang Y, Yang YQ (2014) J Clean Prod 65:561–567

    Article  CAS  Google Scholar 

  3. Zhao Y, Xu H, Mu B, Xu L, Yang Y (2016) Polym Degrad Stabil. doi:10.1016/j.polymdegradstab.2016.08.003

    Google Scholar 

  4. Shaw CB, Carliell CM, Wheatley AD (2002) Water Res 36(8):1993–2001

    Article  CAS  Google Scholar 

  5. Oh SY, Kim HW, Park JM, Park HS, Yoon C (2009) J Hazard Mater 168(1):346–351

    Article  CAS  Google Scholar 

  6. Zhao Y, Zhao YZ, Xu HL, Yang YQ (2015) Environ Sci Technol 49(4):2391–2397

    Article  CAS  Google Scholar 

  7. Shi B (2009) J Cotton Text Technol 7:006

    Google Scholar 

  8. Reddy N, Zhang Y, Yang YQ (2013) ACS Sustain. Chem. Eng. 1(12):1564–1571

    Article  CAS  Google Scholar 

  9. Rouse JG, Van Dyke ME (2010) Materials 3(2):999–1014

    Article  Google Scholar 

  10. Kroner M, Niessne M, Hartmann H, Voelker D, Hartmann J, Schoepke H (1993) US Patent No. 5,208,075. US Patent and Trademark Office, Washington, DC

  11. Sun XZ (2005) Bio-based polymers and composites. Elsevier, Burlington

    Google Scholar 

  12. Mo XQ, Sun XZ (2000) J Polym Environ 8(4):161–166

    Article  CAS  Google Scholar 

  13. Robert AM, Johnston DB, Hicks KB (2014) http://bioenergy.illinois.edu/news/biorefinery/pp_moreau.pdf. Accessed 20 Oct 2015)

  14. Wang S, Sue HJ, Jane J (1996) J Macromol Sci A 33(5):557–569

    Article  Google Scholar 

  15. Kumar R, Choudhary V, Mishra S, Varma IK, Mattiason B (2002) Ind Crop Prod 16(3):155–172

    Article  CAS  Google Scholar 

  16. Swain SN, Biswal SM, Nanda PK, Nayak PL (2004) J Polym Environ 12(1):35–42

    Article  CAS  Google Scholar 

  17. Zhou XB, Mohanty A, Misra M (2013) J Polym Environ 21(3):615–622

    Article  CAS  Google Scholar 

  18. Chien KB, Shah RN (2012) Acta Biomater 8(2):694–703

    Article  CAS  Google Scholar 

  19. Huang C, Geng X, Qinfei K, Xiumei M, Al-Deyab SS, El-Newehy M (2012) Prog Nat Sci 22(2):108–114

    Article  Google Scholar 

  20. Zhao Y, Jiang QR, Xu HL, Reddy N, Xu L, Yang YQ (2014) J Biomed Mater Res B 102(4):729–736

    Article  Google Scholar 

  21. Zhao Y, Xu H, Mu B, Xu L, Hogan R, Yang Y (2016) Ind Crop Prod 89:455–464

    Article  CAS  Google Scholar 

  22. Chen LH, Reddy N, Yang YQ (2013) Environ Sci Technol 47(9):4505–4511

    Article  CAS  Google Scholar 

  23. Ghaly AE, Ananthashankar RA, Ramakrishnan VV (2014) J Chem Eng Process Technol 5:182

    Google Scholar 

  24. Zhao YZ, Zhao Y, Yang YQ (2015) Ind Crop Prod 67:466–474

    Article  CAS  Google Scholar 

  25. Na Cao, Yang XM, Fu YH (2009) Food Hydrocoll. Prod 23(3):729–735

    Google Scholar 

  26. Zhu Y, Douglass E, Theyson T, Hogan R, Kotek R (2013) Macromol Symp 329(1):70–86

    Article  CAS  Google Scholar 

  27. Yang YQ, Reddy N (2013) Cellulose 20(4):2163–2174

    Article  CAS  Google Scholar 

  28. Cardon BP, Stanley EB, Pistor WJ, Nesbitt JC (1951) The use of salt as a regulator of supplemental feed intake and its effect on the health of range livestock. University of Arizona, Tucson

    Google Scholar 

Download references

Acknowledgments

This research was financially supported by the United Soybean Board Domestic Programs (1440-512-5296), USDA-National Institute of Food and Agriculture (Multi-State Project S1054 (NEB 37-037) and Hatch Act), and the Agricultural Research Division at the University of Nebraska Lincoln. Yi is grateful to China Scholarship Council and John and Louise Skala Fellowship for their financial support. We thank ADM for their help. The authors also thank Madhuri Palakurthi and Wei Li for their help of films testing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiqi Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Xu, H. & Yang, Y. Development of Biodegradable Textile Sizes from Soymeal: A Renewable and Cost-Effective Resource. J Polym Environ 25, 349–358 (2017). https://doi.org/10.1007/s10924-016-0811-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-016-0811-6

Keywords

Navigation