Skip to main content
Log in

Strategies to Produce Thermoplastic Starch–Zein Blends: Effect on Compatibilization

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Different strategies to produce thermoplastic materials using starch and zein were studied, aiming to investigate their effect on the compatibility of starch and zein. Research strategies comprised the use of two different plasticizers for starch, two different compatibilizing agents, and two blending procedures. The plasticizers were mixtures of sorbitol and glycerol (SG) or urea and formamide (UF). UF and maleated starch (MS) were used as compatibilizing agents. The blending procedures included: (1) thermoextruding starch and zein as premixed powder materials (TP[Mix]) and (2) coextruding the biopolymers previously thermoplasticized with suitable plasticizers. As observed by the tensile tests, scanning electronic microscopy, and dynamic mechanical analysis, segregation of phases occurred at different extents in all the starch–zein blends. Materials made with MS through the TP[Mix] procedure presented the most severe phases segregation, while the materials made with UF showed higher compatibility between starch and zein. Fourier Transform Infrared Spectroscopy (FTIR) suggests that increased zein content leads to a lower molecular order, which was ascribed to diminished molecular entanglement. Thermogravimetric analysis and FTIR analysis showed that the chemical interaction between starch and zein occurred more extensively in slabs made with UF than those made with MS. In addition, foamability was evaluated for the selected materials using supercritical CO2. Neat thermoplasticized starch plasticized with UF and themoplasticized zein with polyethylene-glycol 400 showed good suitability to be foamed, producing foams with porosities above 85 %. Starch plasticized with SG and starch–zein blends yielded compact structures with low porosity values after foaming.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

UF:

Urea and formamide mixture at 2:1 (wt:wt) ratio

SG:

Sorbitol and glycerol mixture at 1.4:1 (wt:wt) ratio

MS:

Maleated starch

MSG:

Mixture of native/maleated starch (50:50) and SG as plasticizer

TPSUF :

Native starch thermoplasticized with UF

TPSSG :

Native starch thermoplasticized with SG

TPSMSG :

Thermoplasticized MSG

TPZ:

Zein thermoplasticized with PEG400

Mix[TP]:

Mixing thermoplasticized biopolymers through thermoextrusion

TP[Mix]:

Thermoplasticizing powder compositions of biopolymers and plasticizers

References

  1. Hablot E, Dewasthale S, Zhao Y, Zhiguan Y, Shi X, Graiver D, Narayan R (2013) Eur Polym J 49:873–881

    Article  CAS  Google Scholar 

  2. Xie F, Halley PJ, Avérous L (2012) Prog Polym Sci 37:595–623

    Article  CAS  Google Scholar 

  3. Zullo R, Iannace S (2009) Carbohydr Polym 77:376–383

    Article  CAS  Google Scholar 

  4. Habeych E, van der Goot AJ, Boom R (2009) Chem Eng Sci 64:3516–3524

    Article  CAS  Google Scholar 

  5. Lim S, Jane J (1994) J Environ Polym Degrad 2:111–120

    Article  CAS  Google Scholar 

  6. Spence KE, Jane J, Pometto AL (1995) J Environ Polym Degrad 3:69–74

    Article  CAS  Google Scholar 

  7. Chanvrier H, Colonna P, Della Valle G, Lourdin D (2005) Carbohyd Polym 59:109–119

    Article  CAS  Google Scholar 

  8. Corradini E, Carvalho AJF, Curvelo AAS, Agnelli JAM, Mattoso LHC (2007) Mater Res 10:227–231

    Article  Google Scholar 

  9. Habeych E, Dekkers B, van der Goot AJ, Boom R (2008) Chem Eng Sci 63:5229–5238

    Article  CAS  Google Scholar 

  10. Zeng M, Huang Y, Lu L, Fan L, Lourdin D (2011) Carbohydr Polym 84:323–328

    Article  CAS  Google Scholar 

  11. Chanvrier H, Della Valle G, Lourdin D (2006) Carbohydr Polym 65:346–356

    Article  CAS  Google Scholar 

  12. Corradini E, Souto de Medeiros E, Carvalho AJF, Curvelo AAS, Mattoso LHC LHC (2006) J Appl Polym Sci 101:4133–4139

    Article  CAS  Google Scholar 

  13. Leroy E, Jacquet P, Coativy G, Reguerre AL, Lourdin D (2012) Carbohydr Polym 89:955–963

    Article  CAS  Google Scholar 

  14. Krogars K, Heinämäki J, Karjalainen M, Niskanen A, Leskelä M, Yliruusi J (2003) Int J Pharm 251:205–208

    Article  CAS  Google Scholar 

  15. Di Maio E, Mali R, Iannace S (2010) J Polym Environ 18:626–633

    Article  Google Scholar 

  16. Murúa-Pagola B, Beristain-Guevara CI, Martínez-Bustos F (2009) J Food Eng 91:380–386

    Article  Google Scholar 

  17. Bulnes-Abundis D, Alvarez MM (2013) AIChE J 59:3092–3108

    Article  CAS  Google Scholar 

  18. Sánchez Cervantes M, Lacombe J, Muzzio FJ, Álvarez MM (2006) Chem Eng Sci 61:8075–8084

    Article  Google Scholar 

  19. Marrazzo C, Di Maio E, Iannace S (2007) J Cell Plast 43:123–133

    Article  CAS  Google Scholar 

  20. Oliviero M, Verdolotti L, Di Maio E, Aurilia M, Iannace S (2011) J Agric Food Chem 59:10062–10070

    Article  CAS  Google Scholar 

  21. Gaina C, Ursache O, Gaina V, Buruiana E, Ionita D (2012) Express Polym Lett 6:129–141

    Article  CAS  Google Scholar 

  22. Huang M, Yu J, Ma X (2006) Carbohydr Polym 63:393–399

    Article  CAS  Google Scholar 

  23. Lourdin D, Bizot H, Colonna P (1997) J Appl Polym Sci 63:1047–1053

    Article  CAS  Google Scholar 

  24. Wu Q, Yoshino T, Sakabe H, Zhang H, Isobe S (2003) Polymer 44:3909–3919

    Article  CAS  Google Scholar 

  25. Ma XF, Yu JG, Wan JJ (2006) Carbohyd Polym 64:267–273

    Article  CAS  Google Scholar 

  26. Salerno A, Oliviero M, Di Maio E, Netti PA, Rofani C, Colosimo A, Guida V, Dallapiccola B, Palma P, Procaccini E, Berardi AC, Velardi F, Teti A, Iannace S (2010) J Mater Sci Mater Med 21:2569–2581

    Article  CAS  Google Scholar 

  27. Verbeek CJR, van den Berg LE (2010) Macromol Mater Eng 295:10–21

    Article  CAS  Google Scholar 

  28. Oliviero M, Di Maio E, Iannace S (2010) J Appl Polym Sci 115:277–287

    Article  CAS  Google Scholar 

  29. Shi R, Zhang Z, Liu Q, Han Y, Zhang L, Chen D, Tian W (2007) Carbohydr Polym 69:748–755

    Article  CAS  Google Scholar 

  30. Raquez JM, Nabar Y, Srinivasan M, Shin BY, Narayan R, Dubois P (2008) Carbohydr Polym 74:159–169

    Article  CAS  Google Scholar 

  31. Tay SH, Pang SC, Chin SF (2012) Carbohydr Polym 88:1195–1200

    Article  CAS  Google Scholar 

  32. Furukawa T, Sato H, Murakami R, Zhang J, Noda I, Ochiai S, Ozaki Y (2006) Polymer 47:3132–3140

    Article  CAS  Google Scholar 

  33. Liu H, Adhikari R, Guo Q, Adhikari B (2013) J Food Eng 116:588–597

    Article  CAS  Google Scholar 

  34. Van Soest JJG, Tournois H, de Wit D, Vliegenthart JFG (1995) Carbohydr Res 279:201–214

    Article  Google Scholar 

  35. Sevenou O, Hill S, Farhat I, Mitchell J (2002) Int J Biol Macromol 31:79–85

    Article  CAS  Google Scholar 

  36. Van Soest JJG, de Wit D, Tournois H, Vliegenthart JFG (1994) Starch 46:453–457

    Article  Google Scholar 

  37. Salerno A, Oliviero M, Di Maio E, Iannace S (2007) Int Polym Proc 22:480–488

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the financial support of Tecnológico de Monterrey through the seed fund CAT-121 and CDB-181 (Centro de Biotecnologia FEMSA, Tecnologico de Monterrey, Monterrey, Nuevo Leon, Mexico). CONACyT (Mexico) provided doctoral scholarship 45964 to GTdeS. We are grateful to Massimo Lombardo (Department of Materials and Production Engineering, University of Naples Federico II, Naples, Italy), Cristina del Barone (Laboratorio LaMest, CNR, Naples, Italy), Fabio Docimo, and Maria Rosaria Marcedula (Istituto per i Materiali Compositi e Biomedici, CNR, Naples, Italy) for the technical support provided for producing and studying the materials addressed in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ernesto Di Maio.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trujillo-de Santiago, G., Rojas-de Gante, C., García-Lara, S. et al. Strategies to Produce Thermoplastic Starch–Zein Blends: Effect on Compatibilization. J Polym Environ 22, 508–524 (2014). https://doi.org/10.1007/s10924-014-0685-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-014-0685-4

Keywords

Navigation