Skip to main content
Log in

Effect of Epoxidized Soybean Oil on Curing, Rheological, Mechanical and Thermal Properties of Aromatic and Aliphatic Epoxy Resins

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

In order to facilitate the application of bio-based resins in more demanding advanced sectors as electrical and aeronautical industry, a systematic study was carried out to characterize the effect of epoxidized soybean oil (ESO), one of the most commonly used bio-based resins, on curing and rheological behavior, glass transition temperature, mechanical and thermal properties in various epoxy resin systems. Besides the conventional, widely investigated aromatic diglycidylether of bisphenol-A (DGEBA) resin, a glycerol- and a pentaerythritol-based aliphatic resin was chosen as base resin, whose synthesis is feasible from renewable materials as well, in the end leading to full replacement of mineral oil based resins by renewable sourced ones. In the hybrid resin system the ESO content was systematically increased from 0 to 100 mass%. The results indicate that in the case of the DGEBA containing hybrid systems the overall performance deteriorates with increasing ESO-content, while in the case of the aliphatic resins the glass transition temperature increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Raquez J-M, Deléglise M, Lacrampe M-F, Krawczak P (2010) Prog Polym Sci 35:487

    Article  CAS  Google Scholar 

  2. Liu XQ, Huang W, Jiang YH, Zhu J, Zhang CZ (2012) Express Polym Lett 6:293

    Article  CAS  Google Scholar 

  3. Sarwono A, Man Z, Bustam MA (2012) J Polym Environ 20:540

    Article  CAS  Google Scholar 

  4. Güner FS, Yagci Y, Erciyes AT (2006) Prog Polym Sci 31:633

    Article  Google Scholar 

  5. Tan SG, Chow WS (2010) Polym Plast Technol 49:1581

    Article  CAS  Google Scholar 

  6. Wang R, Schuman TP (2013) Express Polym Lett 7:272

    Article  CAS  Google Scholar 

  7. Ratna D (2001) Polym Int 50:179

    Article  CAS  Google Scholar 

  8. Zhu J, Chandrashekhara K, Flanigan V, Kapila S (2004) J Appl Polym Sci 91:3513

    Article  CAS  Google Scholar 

  9. Earls JD, White JE, López LC, Lysenko Z, Dettloff ML, Null MJ (2007) Polymer 48:712

    Article  CAS  Google Scholar 

  10. Li J, Du Z, Li H, Zhang C (2009) Polymer 50:1526

    Article  CAS  Google Scholar 

  11. Mustata F, Tudorachi N, Rosu D (2011) Compos B 42:1803

    Article  Google Scholar 

  12. Park S-J, Jin F-L, Lee J-R (2004) Mat Sci Eng A 374:109

    Article  Google Scholar 

  13. Park S-J, Jin F-L, Lee J-R (2004) Macromol Chem Phys 205:2048

    Article  CAS  Google Scholar 

  14. Gerbase AE, Petzhold CL, Costa APO (2002) J Am Oil Chem Soc 79:797

    Article  CAS  Google Scholar 

  15. Miyagawa H, Misra M, Drzal LT (2005) Polym Eng Sci 45:487

    Article  CAS  Google Scholar 

  16. Altuna FI, Espósito LH, Ruseckaite RA, Stefani PM (2011) J Appl Polym Sci 120:789

    Article  CAS  Google Scholar 

  17. Gupta AP, Ahmad S, Dev A (2011) Polym Eng Sci 51:1087

    Article  CAS  Google Scholar 

  18. Karger-Kocsis J, Grishchuk S, Sorochynska L, Rong MZ (2013) Polym Eng Sci 54:747

  19. Kim JR, Sharma S (2012) Ind Crop Prod 36:485

    Article  CAS  Google Scholar 

  20. Jin F-L, Park S-J (2007) J Ind Eng Chem 13:808

    CAS  Google Scholar 

Download references

Acknowledgments

The research leading to these results has received funding from the European Union’s Seventh Framework Programme (FP7/2007-2013) for the Clean Sky Joint Technology Initiative under Grant Agreement No 298090. This work is connected to the scientific program of the “Development of quality-oriented and harmonized R + D + I strategy and functional model at BME” project. This project is supported by the New Széchenyi Plan (Project ID: TÁMOP-4.2.1/B-09/1/KMR-2010-0002) and by the NFÜ EU_BONUS_12-1-2012-0026. The work reported in this paper has been developed in the framework of the project “Talent care and cultivation in the scientific workshops of BME” project. This project is supported by the grant TÁMOP-4.2.2.B-10/1–2010-0009. Andrea Toldy acknowledges the financial support received through János Bolyai Scholarship of the Hungarian Academy of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Toldy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niedermann, P., Szebényi, G. & Toldy, A. Effect of Epoxidized Soybean Oil on Curing, Rheological, Mechanical and Thermal Properties of Aromatic and Aliphatic Epoxy Resins. J Polym Environ 22, 525–536 (2014). https://doi.org/10.1007/s10924-014-0673-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-014-0673-8

Keywords

Navigation