Skip to main content
Log in

IR Thermographic Analysis of 3D Printed CFRP Reference Samples with Back-Drilled and Embedded Defects

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

Carbon-fiber composite structures may demonstrate a defective behavior due to manufacturing induced anomalies (delamination, dis-bonds) or service related defectives (impact damage, water ingress). Thus, there is a need for a relatively fast and low cost non-intrusive testing schemes such as infrared thermography (IRT). Still, thermography testing requires calibrated samples and coupons to yield best results. The presented research demonstrates the novel use of 3D printing technology to generate IRT calibration samples. In this text, two carbon fiber reinforced polymer samples are 3D printed; the first mimics a “back-drilled holes” type coupons, while the other is designed to embed air pockets similar to Teflon inserts. The generated samples are then tested using two IRT modalities; namely pulse thermography and lock-in thermography. Furthermore, the resulted thermograms are processed using a principle component analysis, to help highlight the variance of defectives in a consistent manner among the samples. This research findings offer insights on the variation of detectability between embedded and back-printed samples, which might be due to the inserts thickness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ley, O., Godinez-Azcuaga, V.: Line scanning thermography and its application inspecting aerospace composites. In: 5th International Symposium on the NDT Aerospace, Singapore (2013)

  2. Khodayar, F., Lopez, F., Ibarra-Castanedo, C., Maldague, X.: Optimization of the inspection of large composite materials using robotized line scan thermography. J. Nondestruct. Eval. 36, 32 (2017)

    Article  Google Scholar 

  3. Bonavolonta, C., Valentino, M., Peluso, G., Barone, A.: Non destructive evaluation of advanced composite materials for aerospace application using HTS SQUIDs. IEEE Trans. Appl. Supercond. 17, 772–775 (2007)

    Article  Google Scholar 

  4. Matthews, F.L., Rawlings, R.D.: Composite materials: engineering and science. Elsevier, New York (1999)

    Google Scholar 

  5. Soutis, C.: Fibre reinforced composites in aircraft construction. Prog. Aerosp. Sci. 41, 143–151 (2005)

    Article  Google Scholar 

  6. Smith, R.A.: Composite defects and their detection. Mater. Sci. Eng. 3, 103–143 (2009)

    Google Scholar 

  7. Dillenz, A., Zweschper, T., Busse, G.: Progress in ultrasound phase thermography. In: Thermosense XXIII, International Society for Optics and Photonics, pp. 574–580 (2001)

  8. Rubensson, J.: Modeling of ultrasonic nondestructive testing of pipes (2011)

  9. McCann, D.M., Forde, M.C.: Review of NDT methods in the assessment of concrete and masonry structures. NDT & E Int. 34, 71–84 (2001)

    Article  Google Scholar 

  10. Favro, L.D., Han, X., Ouyang, Z., Sun, G., Sui, H., Thomas, R.L.: Infrared imaging of defects heated by a sonic pulse. Rev. Sci. Instrum. 71, 2418–2421 (2000)

    Article  Google Scholar 

  11. Avdelidis, N.P., Hawtin, B.C., Almond, D.P.: Transient thermography in the assessment of defects of aircraft composites. NDT & E Int. 36, 433–439 (2003)

    Article  Google Scholar 

  12. Theodorakeas, P., Avdelidis, N.P., Hrissagis, K., Ibarra-Castanedo, C., Koui, M., Maldague, X.: Automated transient thermography for the inspection of CFRP structures: experimental results and developed procedures. In: Thermosense: thermal infrared applications XXXIII, International Society for Optics and Photonics, p. 80130W (2011)

  13. Ibarra-Castanedo, C., Genest, M., Piau, J.-M., Guibert, S., Bendada, A., Maldague, X.P.: Active infrared thermography techniques for the nondestructive testing of materials. Ultrason. Adv. Methods Nondestruct. Test. Mater. Charact. (2007). https://doi.org/10.1142/9789812770943_0014

    Article  Google Scholar 

  14. Giorleo, G., Meola, C.: Comparison between pulsed and modulated thermography in glass–epoxy laminates. NDT & E Int. 35, 287–292 (2002)

    Article  Google Scholar 

  15. Fernandes, H.C., Zhang, H., Morioka, K., Ibarra-Castanedo, C., López, F., Maldague, X.P., Tarpani, J.R.: Infrared thermography for CFRP inspection: computational model and experimental results. In: Thermosense: thermal infrared applications XXXVIII, International Society for Optics and Photonics, p. 98610H (2016)

  16. Manohar, A., di Scalea, F.L.: Modeling 3D heat flow interaction with defects in composite materials for infrared thermography. NDT & E Int. 66, 1–7 (2014)

    Article  Google Scholar 

  17. Maldague, X., Galmiche, F., Ziadi, A.: Advances in pulsed phase thermography. Infrared Phys. Technol. 43, 175–181 (2002)

    Article  Google Scholar 

  18. Peeters, J., Ibarra-Castanedo, C., Sfarra, S., Maldague, X., Dirckx, J.J.J., Steenackers, G.: Robust quantitative depth estimation on CFRP samples using active thermography inspection and numerical simulation updating. NDT & E Int. 87, 119–123 (2017)

    Article  Google Scholar 

  19. Ibarra-Castanedo, C., Piau, J.-M., Guilbert, S., Avdelidis, N.P., Genest, M., Bendada, A., Maldague, X.P.: Comparative study of active thermography techniques for the nondestructive evaluation of honeycomb structures. Res. Nondestruct. Eval. 20, 1–31 (2009)

    Article  Google Scholar 

  20. Nikishkov, Y., Airoldi, L., Makeev, A.: Measurement of voids in composites by X-ray computed tomography. Compos. Sci. Technol. 89, 89–97 (2013)

    Article  Google Scholar 

  21. Plank, B., Rao, G., Kastner, J.: Evaluation of CFRP-reference samples for porosity made by drilling and comparison with industrial porosity samples by means of quantitative XCT. In: 7th International Symposium on the NDT Aerospace (2015)

  22. Guo, X., Vavilov, V., Guo, G., Shao, W., Liu, Y.: Modeling and image processing in infrared thermographic NDT of composite materials. J. Beijing Univ. Aeronaut. Astronaut. 20(4), 363–369 (2004)

    Google Scholar 

  23. Materials, (n.d.). https://markforged.com/materials/. (2018). Accessed 1 Mar 2018

  24. Maldague, X., Marinetti, S.: Pulse phase infrared thermography. J. Appl. Phys. 79, 2694–2698 (1996)

    Article  Google Scholar 

  25. Rajic, N.: Principal component thermography for flaw contrast enhancement and flaw depth characterisation in composite structures. Compos. Struct. 58, 521–528 (2002)

    Article  Google Scholar 

  26. Wu, J.-Y., Sfarra, S., Yao, Y.: Sparse principal component thermography for subsurface defect detection in composite products. In: IEEE Transactions on Industrial Informatics (2018)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed A. Omar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saeed, N., Omar, M.A., Abdulrahman, Y. et al. IR Thermographic Analysis of 3D Printed CFRP Reference Samples with Back-Drilled and Embedded Defects. J Nondestruct Eval 37, 59 (2018). https://doi.org/10.1007/s10921-018-0512-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10921-018-0512-2

Keywords

Navigation