Skip to main content
Log in

Damage Identification in Active Plates with Indices Based on Gaussian Confidence Ellipses Obtained of the Electromechanical Admittance

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

Structural health monitoring (SHM) is an important area of study in the diagnosis of structural failures. Through SHM, structures can be diagnosed by electromechanical impedance (EMI) technique to detect changes in operative state. The signals of EMI obtained from piezoelectric transducers (PZT) are processed to quantify and classify damage severities by means of indices. These indices are studied and analyzed to recognize damage patterns in the electrical signals emitted by PZTs. In this research, an experimental analysis is carried out to identify structural damage in active plates with indices based on Gaussian confidence ellipses of the EM admittance. Three experimental tests are performed to assess the feasibility of the indices in the damage identification. A damage metric is depicted in each test together with the conductance (G) and susceptance (B), which were analyzed from different points of view. A probabilistic procedure is established to estimate Gaussian ellipses from a structure without damage with the aim to establish an alert baseline before that damage is induced. The results show that using the proposed methodology, the damage identification is a feasible procedure in the proposed case studies. Therefore, the presented analysis can be extrapolated to other applications to identify damage and so to test the feasibility of the methodology in other context.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Giurgiutiu, V.: Structural Health Monitoring with Piezoelectric Wafer Active Sensors. Academic Press, Amsterdam/Boston (2008)

    Google Scholar 

  2. Xu, Y.G., Liu, G.R.: A modified electro-mechanical impedance model of piezoelectric actuator-sensors for debonding detection of composite patches. J. Intell. Mater. Syst. Struct. 13(6), 389–396 (2002). doi:10.1177/104538902761696733

    Article  Google Scholar 

  3. Giurgiutiu, V., Rogers, C.A.: Electro-mechanical (E/M) impedance method for structural health monitoring and non-destructive evaluation. Struct. Health Monit. 1997, 18–20 (1997)

    Google Scholar 

  4. Annamdas, V.G.M., Soh, C.K.: Application of electromechanical impedance technique for engineering structures: review and future issues. J. Intell. Mater. Syst. Struct. 21(1), 41–59 (2010). doi:10.1177/1045389X09352816

    Article  Google Scholar 

  5. Gresil, M., Yu, L., Giurgiutiu, V., Sutton, M.: Predictive modeling of electromechanical impedance spectroscopy for composite materials. Struct. Health Monit. 11(6), 671–683 (2012). doi:10.1177/1475921712451954

    Article  Google Scholar 

  6. Giurgiutiu, V., Reynolds, A., Rogers, C.A.: Experimental investigation of E/M impedance health monitoring for spot- welded structural joints. J. Intell. Mater. Syst. Struct. 10(9), 802–812 (1999). doi:10.1106/N0J5-6UJ2-WlGV-Q8MC

    Article  Google Scholar 

  7. Liu, S.C., Tomizuka, M., Ulsoy, G.: Strategic issues in sensors and smart structures. Struct. Control Health Monit. 13(6), 946–957 (2006). doi:10.1002/stc.88

    Article  Google Scholar 

  8. Pavelko, V., Ozolinsh, I. Kuznetsov, S., Pavelko, I.: Structural health monitoring of aircraft structure by method of electromechanical impedance. In: Proceedings of the 6th NDT in Progress 2011 International Workshop of NDT Experts, Prague, Czech Republic, October 2011

  9. Liang, C., Sun, F.P., Rogers, C.A.: Coupled electro-mechanical analysis of adaptive material systems: determination of the actuator power consumption and system energy transfer. J. Intell. Mater. Syst. Struct. 5(1), 12–20 (1994). doi:10.1177/1045389X9400500102

    Article  Google Scholar 

  10. Liang, C., Sun, F., Rogers, C.A.: Electro-mechanical impedance modeling of active material systems. Smart Mater. Struct. 5(2), 171 (1996). doi:10.1088/0964-1726/5/2/006

    Article  Google Scholar 

  11. Adams, D.E.: Health monitoring of structural materials and components: methods with application. Wiley, Chichester (2007)

    Book  Google Scholar 

  12. Naidu A.S.K.: Structural damage identification with admittance signatures of smart PZT transducers. PhD Thesis, Nanyang Technological University, Singapore (2004)

  13. Rosiek, M., Martowicz, A., Uhl, T., Stępiński, T., Łukomski, T.: Electromechanical impedance method for damage detection in mechanical structures. In: Proceedings of 11th IMEKO TC, vol. 10, pp. 18–20 (2010)

  14. Tinoco, H.A., Marulanda, D.J.: A new index for damage identification in active beams with electromechanical impedance technique (EMI) approach to SHM. In: Proceedings of II International Conference on Advanced Mechatronics, Design, and Manufacturing Technology (AMDM 2014), pp. 1–6, Bogota, Colombia (2014). doi: 10.13140/2.1.5000.1920

  15. Ai, D., Zhu, H., Luo, H., Yang, J.: An effective electromechanical impedance technique for steel structural health monitoring. Constr. Build. Mater. 73, 97–104 (2014). doi:10.1016/j.conbuildmat.2014.09.029

    Article  Google Scholar 

  16. Moharana, S., Bhalla, S.: Influence of adhesive bond layer on power and energy transduction efficiency of piezo-impedance transducer. J. Intell. Mater. Syst. Struct. 26(3), 247–259 (2014). doi:10.1177/1045389X14523858

    Article  Google Scholar 

  17. Pavelko, V., Kuznetsov, S., Ozolinsh, I., Pavelko, I.: Some applications of electromechanical impedance technology for SHM. In: Proceedings of 11th European Conference on Non-Destructive Testing, Prague, Czech Republic (2014)

  18. Giurgiutiu, V., Kropas-Hughes, C.V.: Comparative study of neural network damage detection from a statistical set of electro-mechanical impedance spectra. In: Proceedings of NDE for Health Monitoring and Diagnostics, pp. 108–109, International Society for Optics and Photonics (2003)

  19. Giurgiutiu, V., Zagrai, A.: Damage detection in thin plates and aerospace structures with the electro-mechanical impedance method. Struct. Health Monit. 4(2), 99–118 (2005)

    Article  Google Scholar 

  20. Agilent Technologies.: Impedance measurement handbook. Agilent Technologies, Palo Alto (2003). http://cp.literature.agilent.com/litweb/pdf/5950-3000.pdf, 25 May 2014

  21. Agilent Technologies.: A data sheet of Agilent E4980A precision LCR meter, Agilent Technologies, USA (2008). http://cp.literature.agilent.com/litweb/pdf/5989-4435EN.pdf, 23 May 2014

  22. HP LF 4192A: Impedance Analyzer Operation Manual HP LF 4192A. Hewlett Packard, Tokyo (1996)

  23. Pearis, D.M., Grisso, B.L., Margasahayam, R.N., Page, K.R., Inman, D.J.: Impedance-based health monitoring of space shuttle ground structures. In: Proceedings of SPIE, vol. 5394, pp. 99–107, San Diego, CA, USA (2004a)

  24. Peairs, D.M., Park, G., Inman, D.J.: Improving accessibility of the impedance-based structural health monitoring method. J. Intell. Mater. Syst. Struct. 15(2), 129–139 (2004b)

    Article  Google Scholar 

  25. Analog Devices: Datasheet AD5933. Analog Devices (2014). http://www.analog.com/static/imported-files/data_sheets/AD5933.pdf

  26. Berney, H., O’Riordan, J.J.: Impedance measurement monitors blood coagulation. Analog Dialogue. 42(3), 42–08 (2008)

    Google Scholar 

  27. Ferreira, J., Seoane, F., Ansede, A., Bragos, R.: AD5933-based spectrometer for electrical bioimpedance applications. J. Phys. 224(1), 012011 (2010)

    Google Scholar 

  28. Watkins, A.J., Kitcher, C.: Electrical Installation and Calculations, 6th edn. Elsevier, Jordan Hill (2006)

    Google Scholar 

  29. Tinoco, H.A., Serpa, A.L.: Voltage relations for debonding detection of piezoelectric sensors with segmented electrode. Mech. Syst. Signal Process. 31, 258–267 (2012). doi:10.1016/j.ymssp.2012.03.018

    Article  Google Scholar 

  30. Sirohi, J., Chopra, I.: Fundamental understanding of piezoelectric strain sensors. J. Intell. Mater. Syst. Struct. 11(4), 246–257 (2000). doi:10.1106/8BFB-GC8P-XQ47-YCQ0

    Article  Google Scholar 

  31. Tinoco, H.A., Serpa, A.L.: Bonding influence in the electromechanical (EM) admittance of piezoelectric sensors bonded to structures based on EMI technique. In: Proceedings of the 14th International Symposium on Dynamic Problems of Mechanics (DINAME XIV), pp. 335–344, Maresias, Brazil (2011). doi:10.13140/2.1.5150.4967

  32. Fu, Z.F., He, J.: Modal Analysis. Butterworth-Heinemann, Oxford (2011)

    Google Scholar 

  33. Ribeiro, M.I.: Gaussian probability density functions: properties and error characterization, Instituto Superior Técnico, Lisboa, Portugal, Tech. Rep, 1049-00 (2004)

  34. Piezoelectric plate: Datasheet of piezoelectric sound components. Sparkfun electronics (2014). https://www.sparkfun.com/datasheets/Sensors/Flex/p37e.pdf

  35. Pereira, D.A., Serpa, A.L.: Bank of H\(\infty \) filters for sensor fault isolation in active controlled flexible structures. Mech. Syst. Signal Process. 60, 678–694 (2015). doi:10.1016/j.ymssp.2015.01.036

    Article  Google Scholar 

  36. Tseng, K.K., Naidu, A.S.K.: Non-parametric damage detection and characterization using smart piezoceramic material. Smart Mater. Struct. 11(3), 317 (2002)

    Article  Google Scholar 

  37. Park, G., Sohn, H., Farrar, C.R., Inman, D.J.: Overview of piezoelectric impedance-based health monitoring and path forward. Shock Vib. Dig. 35(6), 451–464 (2003)

    Article  Google Scholar 

  38. Tawie, R., Lee, H.K.: Monitoring the strength development in concrete by EMI sensing technique. Constr. Build. Mater. 24(8), 1746–1753 (2010)

    Article  Google Scholar 

  39. Overly, T.G., Park, G., Farinholt, K.M., Farrar, C.R.: Piezoelectric active-sensor diagnostics and validation using instantaneous baseline data. Sens. J. IEEE 9(10), 1414–1421 (2009)

    Article  Google Scholar 

  40. Lilliefors, H.W.: On the Kolmogorov–Smirnov test for normality with mean and variance unknown. J. Am. Stat. Assoc. 62(318), 399–402 (1967)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hector A. Tinoco.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tinoco, H.A., Marulanda, D.J. Damage Identification in Active Plates with Indices Based on Gaussian Confidence Ellipses Obtained of the Electromechanical Admittance. J Nondestruct Eval 34, 28 (2015). https://doi.org/10.1007/s10921-015-0299-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10921-015-0299-3

Keywords

Navigation