Skip to main content
Log in

Non-destructive Electrical Methods for Measuring the Physical Characteristics of Porous Materials

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

The durability of reinforced concrete structures, built on the seafront, has been at the heart of recent concerns. Indeed, chloride transport across the porosity of concrete coating produces medium to long-term corrosion of reinforcements. This has a direct impact on the mechanical behavior and the ageing of the affected structures. The difficulty of in situ monitoring of these structures, continuously and non-destructively against infiltration of chlorides, is still topical. The work presented here aims mainly at correlating the electrical properties, i.e. electrical resistance, conductivity..., with the physical characteristics (porosity, tortuosity, ...), of granular materials using Archie’s law. The recommended experimental program consists in placing, different granular materials, i.e. sand, mortar, bricks, and concretes saturated with electrolytic solutions, in a PVC cell fitted with a pair of stainless steel electrodes connected to an electrical circuit, in order to measure the electrical resistances. The results obtained allow one to determine durability factors, such as the connected porosity and the coefficient of chloride diffusion through a simple measurement of the EC, and estimate the tortuosity parameter that governs transport in porous media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Sundberg, K.: Effect of Impregnating Waters on Electrical Conductivity of Soils and Rocks*, pp. 367–391. American Institute of mining and Metallurgical Engineers, New York (1932)

    Google Scholar 

  2. Olphen, H.V.: An Introduction to Clay Colloid Chemistry, for Clay Technologists, Geologists, and Soil Scientists, 2nd edn. Wiley, New York (1977)

    Google Scholar 

  3. Friedman, S.P.: Soil properties influencing apparent electrical conductivity: a review. Comput. Electron. Agric. 46(1), 45–70 (2005)

    Article  Google Scholar 

  4. McCarter, W.: The electrical resistivity characteristics of compacted clays. Geotechnique 34(2), 263–267 (1984)

    Article  Google Scholar 

  5. Shang, J., Lo, K., Inculet, I.: Polarization and conduction of clay-water-electrolyte systems. J. Geotech. Eng. 121(3), 243–248 (1995)

    Article  Google Scholar 

  6. Abu-Hassanein, Z.S., Benson, C.H., Blotz, L.R.: Electrical resistivity of compacted clays. J. Geotech. Eng. 122(5), 397–406 (1996)

    Article  Google Scholar 

  7. Kaya, A., Fang, H.-Y.: Identification of contaminated soils by dielectric constant and electrical conductivity. J. Environ. Eng. 123(2), 169–177 (1997)

    Article  Google Scholar 

  8. Saarenketo, T.: Electrical properties of water in clay and silty soils. J. Appl. Geophys. 40(1), 73–88 (1998)

    Article  Google Scholar 

  9. Friedman, S.P., Jones, S.B.: Measurement and approximate critical path analysis of the pore-scale-induced anisotropy factor of an unsaturated porous medium. Water Resour. Res. 37(11), 2929–2942 (2001)

    Article  Google Scholar 

  10. Friedman, S.P., Robinson, D.A.: Particle shape characterization using angle of repose measurements for predicting the effective permittivity and electrical conductivity of saturated granular media. Water Resour. Res. 38(10), 18-1-1 (2002)

  11. Ma, X., Peyton, A., Zhao, Y.: Eddy current measurements of electrical conductivity and magnetic permeability of porous metals. NDT & E Int. 39(7), 562–568 (2006)

    Article  Google Scholar 

  12. Neithalath, N.: Extracting the performance predictors of enhanced porosity concretes from electrical conductivity spectra. Cem. Concr. Res. 37(5), 796–804 (2007)

    Article  Google Scholar 

  13. McCarter, W., Chrisp, T., Starrs, G., Basheer, P., Blewett, J.: Field monitoring of electrical conductivity of cover-zone concrete. Cem. Concr. Compos. 27(7), 809–817 (2005)

    Article  Google Scholar 

  14. McCarter, W., Starrs, G., Chrisp, T., Banfill, P.F.: Activation energy and conduction in carbon fibre reinforced cement matrices. J. Mater. Sci. 42(6), 2200–2203 (2007)

  15. Bezzar, A., Ghomari, F.: Nondestructive test to track pollutant transport into landfill liners. Environ. Geol. 57(2), 285–290 (2009)

    Article  Google Scholar 

  16. Mesbah, H., Yahia, A., Khayat, K.: Electrical conductivity method to assess static stability of self-consolidating concrete. Cem. Concr. Res. 41(5), 451–458 (2011)

    Article  Google Scholar 

  17. Olsson, N., Baroghel-Bouny, V., Nilsson, L.-O., Thiery, M.: Non-saturated ion diffusion in concrete–a new approach to evaluate conductivity measurements. Cem. Concr. Compos. 40, 40–47 (2013)

    Article  Google Scholar 

  18. Chrisp, T., Starrs, G., McCarter, W., Rouchotas, E., Blewett, J.: Temperature-conductivity relationships for concrete: an activation energy approach. J. Mater. Sci. Lett. 20(11), 1085–1087 (2001)

    Article  Google Scholar 

  19. Aït-Mokhtar, A., Poupard, O., Dumargue, P.: Relationship between the transfer properties of the coating and impedance spectroscopy in reinforced cement-based materials. J. Mater. Sci. 41(18), 6006–6014 (2006)

    Article  Google Scholar 

  20. Poupard, O., Aït-Mokhtar, A., Dumargue, P.: Impedance spectroscopy in reinforced concrete: procedure for monitoring steel corrosion Part I development of the experimental device. J. Mater. Sci. 38(13), 2845–2850 (2003)

    Article  Google Scholar 

  21. Poupard, O., Aït-Mokhtar, A., Dumargue, P.: Impedance spectroscopy in reinforced concrete: experimental procedure for monitoring steel corrosion Part II Polarization effect. J. Mater. Sci. 38(17), 3521–3526 (2003)

    Article  Google Scholar 

  22. Poupard, O., Aït-Mokhtar, A., Dumargue, P.: Corrosion by chlorides in reinforced concrete: determination of chloride concentration threshold by impedance spectroscopy. Cem. Concr. Res. 34(6), 991–1000 (2004)

    Article  Google Scholar 

  23. McCarter, W., Starrs, G.: Impedance characterization of ordinary Portland cement-pulverized fly ash binders. J. Mater. Sci. Lett. 16(8), 605–607 (1997)

    Article  Google Scholar 

  24. Neithalath, N., Sumanasooriya, M.S., Deo, O.: Characterizing pore volume, sizes, and connectivity in pervious concretes for permeability prediction. Mater. Charact. 61(8), 802–813 (2010)

    Article  Google Scholar 

  25. Wang, Y., Gong, F., Ueda, T., Zhang, D.: Theoretical model for estimation of ice content of concrete by using electrical measurements. Proc. Eng. 95, 366–375 (2014)

    Article  Google Scholar 

  26. Corwin, D., Lesch, S.: Apparent soil electrical conductivity measurements in agriculture. Comput. Electron. Agric. 46(1), 11–43 (2005)

    Article  Google Scholar 

  27. Neithalath, N., Jain, J.: Relating rapid chloride transport parameters of concretes to microstructural features extracted from electrical impedance. Cem. Concr. Res. 40(7), 1041–1051 (2010c)

    Article  Google Scholar 

  28. Neithalath, N., Persun, J., Manchiryal, R.K.: Electrical conductivity based microstructure and strength prediction of plain and modified concretes. Int. J. Adv. Eng. Sci. Appl. Math. 2(3), 83–94 (2010)

    Article  Google Scholar 

  29. Bezzar, A., Ghomari, F.: Monitoring of pollutant diffusion into clay liners by electrical methods. Transp. Porous Media 97(2), 147–159 (2013)

    Article  Google Scholar 

  30. Akhavan, A., Rajabipour, F.: Evaluating ion diffusivity of cracked cement paste using electrical impedance spectroscopy. Mater. Struct. 46(5), 697–708 (2013)

    Article  Google Scholar 

  31. Sanish, K., Neithalath, N., Santhanam, M.: Monitoring the evolution of material structure in cement pastes and concretes using electrical property measurements. Constr. Build. Mater. 49, 288–297 (2013)

    Article  Google Scholar 

  32. Bu, Y., Weiss, J.: The influence of alkali content on the electrical resistivity and transport properties of cementitious materials. Cem. Concr. Res. 51, 49–58 (2014)

    Article  Google Scholar 

  33. Taillet, E., Lataste, J.F., Rivard, P., Denis, A.: Non-destructive evaluation of cracks in massive concrete using normal dc resistivity logging. NDT & E Int. 63, 11–20 (2014)

    Article  Google Scholar 

  34. Pacheco, J., Šavija, B., Schlangen, E., Polder, R.B.: Assessment of cracks in reinforced concrete by means of electrical resistance and image analysis. Constr. Build. Mater. 65, 417–426 (2014)

    Article  Google Scholar 

  35. Zhang, D., Cao, Z., Fan, L., Liu, S., Liu, W.: Evaluation of the influence of salt concentration on cement stabilized clay by electrical resistivity measurement method. Eng. Geol. 170, 80–88 (2014)

    Article  Google Scholar 

  36. Archie, G.E.: The electrical resistivity log as an aid in determining some reservoir characteristics. Trans AIMe. 146(1), 54–62 (1942)

    Article  Google Scholar 

  37. Tumidajski, P.J., Schumacher, A., Perron, S., Gu, P., Beaudoin, J.: On the relationship between porosity and electrical resistivity in cementitious systems. Cem. Concr. Res. 26(4), 539–544 (1996)

    Article  Google Scholar 

  38. Robinson, D.A., Friedman, S.P.: Electrical conductivity and dielectric permittivity of sphere packings: measurements and modelling of cubic lattices, randomly packed monosize spheres and multi-size mixtures. Physica A 358(2), 447–465 (2005)

    Article  Google Scholar 

  39. Breysse, D., Klysz, G., Dérobert, X., Sirieix, C., Lataste, J.: How to combine several non-destructive techniques for a better assessment of concrete structures. Cem. Concr. Res. 38(6), 783–793 (2008)

    Article  Google Scholar 

  40. Han, T., Best, A.I., Sothcott, J., North, L.J., MacGregor, L.M.: Relationships among low frequency (2 Hz) electrical resistivity, porosity, clay content and permeability in reservoir sandstones. J. Appl. Geophys. 112, 279–289 (2015)

  41. El-Dieb, A., Hooton, R.: Evaluation of the Katz–Thompson model for estimating the water permeability of cement-based materials from mercury intrusion porosimetry data. Cem. Concr. Res. 24(3), 443–455 (1994)

    Article  Google Scholar 

  42. Nokken, M., Hooton, R.: Using pore parameters to estimate permeability or conductivity of concrete. Mater. Struct. 41(1), 1–16 (2008)

    Article  Google Scholar 

  43. Rhoades, J., Raats, P., Prather, R.: Effects of liquid-phase electrical conductivity, water content, and surface conductivity on bulk soil electrical conductivity. Soil Sci. Soc. Am. J. 40(5), 651–655 (1976)

    Article  Google Scholar 

  44. Naar, S.: Evaluation non destructive du béton par mesures de résistivité électrique et thermographie infrarouge passive [Doctorat thesis]: Bordeaux 1—France (2006)

  45. Dauzères, A.: Etude expérimentale et modélisation des mécanismes physico-chimiques des interactions béton-argile dans le contexte du stockage géologique des déchets radioactifs [doctorat thesis]: Poitiers - France (2010)

  46. Porter, L., Kemper, W., Jackson, R., Stewart, B.: Chloride diffusion in soils as influenced by moisture content. Soil Sci. Soc. Am. J. 24(6), 460–463 (1960)

    Article  Google Scholar 

  47. Olsen, S., Kemper, W.: Movement of nutrients to plant roots. Adv. Agron. 20, 91–151 (1968)

    Article  Google Scholar 

  48. Bear, J.: Dynamics of Fluids in Porous Media. Elsevier, New York (1972)

    MATH  Google Scholar 

  49. Shackelford, C.D., Daniel, D.E.: Diffusion in saturated soil. 2. Results for compacted clay. J. Geotech. Eng. ASCE 117(3), 485–506 (1991)

    Article  Google Scholar 

  50. Wyllie, M., Spangler, M.: Application of electrical resistivity measurements to problem of fluid flow in porous media. AAPG Bull. 36(2), 359–403 (1952)

    Google Scholar 

  51. Yuan-Hui, L., Gregory, S.: Diffusion of ions in sea water and in deep-sea sediments. Geochim. Cosmochim. Acta. 38(5), 703–714 (1974)

    Article  Google Scholar 

  52. Robinson, R., Stokes, R.: Electrolyte Solutions. Butter-Worths, London (1959)

    Google Scholar 

  53. Crank, J.: The Mathematics of Diffusion. Clarendon, Oxford (1975)

    Google Scholar 

  54. Saripalli, K.P., Serne, R.J., Meyer, P.D., McGrail, B.P.: Prediction of diffusion coefficients in porous media using tortuosity factors based on interfacial areas. Groundwater 40(4), 346–352 (2002)

    Article  Google Scholar 

  55. Bear, J., Bachmat, Y.: Introduction to Modelling Phenomena of Transport in Porous Media. Kluwer Academic, Dordrecht (1991)

    Book  Google Scholar 

  56. Dormieux, L., Lemarchand, E.: Modélisation macroscopique du transport diffusif. Apport des méthodes de changement d’échelle d’espace. Oil & Gas. Sci. Technol. 55(1), 15–34 (2000)

    Google Scholar 

  57. Van Brakel, J., Heertjes, P.: Analysis of diffusion in macroporous media in terms of a porosity, a tortuosity and a constrictivity factor. Int. J. Heat Mass Transf. 17(8), 1093–1103 (1974)

    Article  Google Scholar 

  58. Shackelford, C.D.: Laboratory diffusion testing for waste disposal—a review. J. Contam. Hydrol. 7(3), 177–217 (1991)

    Article  Google Scholar 

  59. Dias, C.A.: Analytical model for a polarizable medium at radio and lower frequencies. J. Geophys. Res. 77(26), 4945–4956 (1972)

    Article  Google Scholar 

  60. Rinaldi, V.A., Cuestas, G.A.: Ohmic conductivity of a compacted silty clay. J. Geotech. Geoenviron. Eng. 128(9), 824–835 (2002)

    Article  Google Scholar 

  61. Blewett, J., McCarter, W.J., Chrisp, T.M., Starrs, G.: An experimental study on ionic migration through saturated kaolin. Eng. Geol. 70(3–4), 281–291 (2003)

    Article  Google Scholar 

  62. Neithalath, N., Jain, J.: Relating rapid chloride transport parameters of concretes to microstructural features extracted from electrical impedance. Cem. Concr. Res. 40(7), 1041–1051 (2010)

    Article  Google Scholar 

  63. Nasrallah, S.B., Arnaud, G.: Etude des transferts bidimensionnels de chaleur et de masse lors du séchage par convection naturelle d’une plaque poreuse verticale chauffée par un flux constant. Int. J. Heat Mass Transf. 32(8), 1529–1539 (1989)

    Article  MATH  Google Scholar 

  64. De Larrard, F.: Structures granulaires et formulation des bétons: Laboratoire Central des Ponts et Chaussées - France (1999)

  65. Msaad, Y.: Analyse des mécanismes d’écaillage du béton soumis à des températures élevées [Doctorat thesis]: Ecole des Ponts ParisTech - France (2005)

  66. Chindaprasirt, P., Rattanasak, U.: Shrinkage behavior of structural foam lightweight concrete containing glycol compounds and fly ash. Mater. Des. 32(2), 723–777 (2011)

    Article  Google Scholar 

  67. Boukli Hacéne, S.M.A.: Contribution à l’etude de la résistance caractéristique des bétons de la région de Tlemcen [Doctorat thesis]: Universite Abou Bekr Belkaid - Tlemcen Algérie (2009)

  68. Snyder, K., Feng, X., Keen, B., Mason, T.: Estimating the electrical conductivity of cement paste pore solutions from OH\(^{-}\), K\(^{+}\) and Na\(^{+}\) concentrations. Cem. Concr. Res. 33(6), 793–798 (2003)

    Article  Google Scholar 

  69. Ahl, J., Lü, X.: Studying of salt diffusion behaviour in brick. J. Mater. Sci. 42(7), 2512–2520 (2007)

    Article  Google Scholar 

  70. Touil, B., Ghomari, F., Bezzar, A., Khelidj, A., Bonnet, S.: Etude des performances de durabilité des bétons locaux. XXIXe Rencontres Universitaires de Génie Civil, AUGC. Tlemcen - Algerie (2011)

  71. Hassoune, M., Ghomari, F., Khelidj, A., Bezzar, A., Touil, B.: Influence des paramètres de composition et de cure sur la diffusivité des bétons à base de matériaux locaux. Revue “Nature & Technologie” A-Sciences fondamentales et Engineering. Université de Chlef - Algérie (2014), pp. 02–09

Download references

Acknowledgments

The authors would like to acknowledge the financial backing of DGRSDT through the PNR project Dubem 16–35 who financially supported this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abderrahmane Merioua.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Merioua, A., Bezzar, A. & Ghomari, F. Non-destructive Electrical Methods for Measuring the Physical Characteristics of Porous Materials. J Nondestruct Eval 34, 13 (2015). https://doi.org/10.1007/s10921-015-0287-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10921-015-0287-7

Keywords

Navigation