Skip to main content
Log in

Building Thermography: Detection of Delamination of Adhered Ceramic Claddings Using the Passive Approach

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

Tile detachment is a common durability problem of adhered ceramic claddings causing safety risks. Passive infrared thermography using solar heat gain can be used to detect delamination leading to detachment, and is advantageous especially in the inspection of middle to high-rise buildings envelope although it is qualitative by nature. In this paper, findings of in situ thermographic inspections are comparatively analysed with findings of tapping control and surface moisture measurement, and with findings of thermal simulations to evaluate their efficiency. Comparative analyses showed that passive thermography can be used as a preliminary inspection technique to detect delamination and decide whether further inspection with advanced methods is required to implement maintenance operations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

\(\rho \) :

Density (kg/m\(^{3})\)

\(\lambda \) :

Thermal conductivity (W/mK)

\(h\) :

Sensible enthalpy (J/kg)

\(v\) :

Velocity (m/s)

T:

Temperature (\(^{\circ }\)C)

S\(_\mathrm{h}\) :

Volumetric heat source (W/m\(^{3})\)

d:

Thickness (cm)

c:

Specific heat capacity (J/kg K)

I\(_\mathrm{dv}\) :

Diffuse solar load on vertical surface (W/m\(^{2})\)

\(\Delta \)t\(_{[x-y]}\) :

Temperature difference between \(x\) and \(y\) (\(^{\circ }\)C)

\(_\mathrm{ext}\) :

External air

\(_\mathrm{int}\) :

Interior air

\(_\mathrm{ed}\) :

Projection of a defective area on the exterior surface

\(_\mathrm{es}\) :

Sound area on the exterior surface

\(_\mathrm{id}\) :

Projection of a defective area on the interior surface

\(_\mathrm{is}\) :

Sound area on the interior surface

References

  1. Paiva, J.V., Aguiar, J., Pinho, A. (eds.): Guia Técnico de reabilitação habitacional (Technical guide of housing rehabilitation- vol. 2). National Institute of Habitation—Laboratory of Civil Engineering (LNEC), Lisbon (2006)

  2. Silvestre, J.D., de Brito, J.: Ceramic tiling in building façades: inspection and pathological characterization using an expert system. Constr. Build. Mater. 25(4), 1560–1571 (2011)

    Article  Google Scholar 

  3. ASTM (2007) ASTM D 4788—Standard test method for detecting delamination in bridge decks using infrared thermography. American Society for Testing and Materials (ASTM) International, West Conshohocken (2007)

  4. Edis, E., de Brito, J., Flores-Colen, I.: Diagnosis of exterior wall failures by in situ inspection techniques—Inspection of facades with adhered ceramic cladding (Final report) (DTC No. 18/2011). Technical University of Lisbon—Institute of Engineering of Structures, Soil and Construction (UTL-ICIST), Lisbon (2011)

  5. Edis, E., Flores-Colen, I., de Brito, J.: Passive thermographic detection of moisture problems in facades with adhered ceramic cladding. Constr. Build. Mater. 51(1), 187–197 (2014)

    Article  Google Scholar 

  6. Valluzzi, M.R., Grinzato, E., Pellegrino, C., Modena, C.: IR thermography for interface analysis of FRP laminates externally bonded to RC beams. Mater. Struct. 42(1), 25–34 (2009)

    Article  Google Scholar 

  7. Tavukcuoglu, A., Akevren, S., Grinzato, E.: In situ examination of structural cracks at historic masonry structures by quantitative infrared thermography and ultrasonic testing. J. Mod. Opt. 57(18), 1779–1789 (2010)

    Article  Google Scholar 

  8. Cerdeira, F., Vazquez, M.E., Collazo, J., Granada, E.: Applicability of infrared thermography to the study of the behaviour of stone panels as building envelopes. Energy Build. 43(8), 1845–1851 (2011)

    Article  Google Scholar 

  9. Ghosh, K.K., Karbhari, V.M.: Use of infrared thermography for quantitative non-destructive evaluation in FRP strengthened bridge systems. Mater. Struct. 44(1), 169–185 (2011)

    Article  Google Scholar 

  10. Lai, W.L., Lee, K.K., Kou, S.C., Poon, C.S., Tsang, W.F.: A study of full-field debond behaviour and durability of CFRP-concrete composite beams by pulsed infrared thermography (IRT). NDT&E Int. 52(1), 112–121 (2012)

    Article  Google Scholar 

  11. Li, Z., Yao, W., Lee, S., Lee, C., Yang, Z.: Application of infrared thermography in building finish evaluation. J. Nondestruct. Eval. 19(1), 11–19 (2000)

    Article  Google Scholar 

  12. Meola, C., di Maio, R., Roberti, N., Carlomagno, G.M.: Application of infrared thermography and geophysical methods for defect detection in architectural structures. Eng. Fail Anal. 12(6), 875–892 (2005)

    Article  Google Scholar 

  13. Edis, E., Flores-Colen, I., de Brito, J.: Passive thermographic inspection of adhered ceramic claddings: limitations and conditioning factors. J. Perform. Construct. Facil. 27(6), 737–747 (2012)

    Article  Google Scholar 

  14. ASTM (2010) ASTM C 1153—Standard practice for location of wet insulation in roofing systems using infrared imaging. American Society for Testing and Materials (ASTM) International, West Conshohocken (2010)

  15. Maldague, X.P.V.: Nondestructive Evaluation of Materials by Infrared Thermography. Springer, London (1992)

    Google Scholar 

  16. Grinzato, E., Bison, P.G., Marinetti, S.: Monitoring of ancient buildings by the thermal method. J. Cult. Herit. 3(1), 21–29 (2002)

    Article  Google Scholar 

  17. Grinzato, E., Vavilov, V., Kauppinen, T.: Quantitative infrared thermography in buildings. Energy Build. 29(1), 1–9 (1998)

    Article  Google Scholar 

  18. Santos, C.P., Matias, L., Magalhães, A.C., Veiga, M.R.: Application of thermography and ultra-sounds for wall anomalies diagnosis. A laboratory research study. In: Proceedings of the International Symposium—Non-Destructive Testing in Civil Engineering, Berlin (2003). http://www.ndt.net/article/ndtce03/papers/v082/v082.htm. Accessed November 2013

  19. Maierhofer, Ch., Brink, A., Röllig, M., Wiggenhauser, H.: Transient thermography for structural investigation of concrete and composites in the near surface region. Infrared Phys. Technol, 43(3–5), 271–278 (2002)

    Article  Google Scholar 

  20. Hung, Y.Y., Chen, Y.S., Ng, S.P., Liu, L., Huang, Y.H., Luk, B.L., Ip, R.W.L., Wu, C.M.L., Chung, P.S.: Review and comparison of shearography and active thermography for non-destructive evaluation. Mater. Sci. Eng. 64(5–6), 73–112 (2009)

    Article  Google Scholar 

  21. Chew, M.L.: Assessing building facades using infra-red thermography. Struct. Surv. 16(2), 81–86 (1998)

    Article  Google Scholar 

  22. Washer, G., Fenwick, R., Bolleni, N.: Effects of solar loading on infrared imaging of subsurface features in concrete. J. Bridge Eng. 15, 384–390 (2010). Special Issue: Bridge Inspection and Evaluation

  23. ANSYS (2010) ANSYS Release 13.0—ANSYS FLUENT theory guide. ANSYS Inc., Canonsburg (2010)

  24. Dos Santos, C.A.P., Matias, L.: Coeficientes de transmissão térmica de elementos da envolvente dos edifícios [Heat transfer coefficients of the envelope elements of buildings] (ICT Technical Information, Buildings-ITE 50). National Laboratory of Civil Engineering (LNEC), Lisbon (2006)

    Google Scholar 

  25. BSI: BS EN 12524:2000 Building materials and products—Hygrothermal properties—Tabulated design values. British Standards Institution, London (2000)

  26. IPQ (2006). NP EN 1745: 2005 Alvenarias e elementos de alvenaria. Métodos para determinação de valores térmicos de cálculo [NP EN 1745: 2005 Masonry and masonry products. Methods for determining design thermal values]. Caparica: Portuguese Quality Institute (IPQ) (2006).

  27. DOE (2011) EnergyPlus Simulation Software: Weather Data. US Department of Energy (2011). http://apps1.eere.energy.gov/buildings/energyplus/cfm/weather_data3.cfm/region=6_europe_wmo_region_6/country=PRT/cname=Portugal. Accessed June 2012

  28. ANSYS (2010) ANSYS Release 13.0—ANSYS FLUENT user’s guide. ANSYS Inc., Canonsburg (2010)

  29. RCCTE: Regulamento das Características de Comportamento Térmico dos Edifícios [Regulation of the Thermal Behaviour Characteristics in Buildings]. Diary of Republic I series-A, 67, 2468–2513 (2006)

  30. ASTM (2003) ASTM-C 1060–90 Standard practice for thermographic inspection of insulation installations in envelope cavities of frame buildings. American Society for Testing and Materials (ASTM) International, West Conshohocken (2003).

  31. Clark, M.R., McCann, D.M., Forde, M.: Application of infrared thermography to the non-destructive testing of concrete and masonry bridges. NDT&E Int. 36(4), 265–275 (2003)

    Article  Google Scholar 

  32. Phillipson, M.C., Baker, P.H., Davies, M., Ye, Z., McNaughtan, A., Galbraith, G.H., McLean, R.C.: Moisture measurement in building materials: an overview of current methods and new approaches. Build. Serv. Eng. Res. Tech. 28(4), 303–316 (2007)

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the Building Physics group of DECivil-IST for the technical support and for allowing the use of IR equipment. The first author thanks DECivil-IST, ICIST Research Institute, ITU, and TUBITAK for the support provided for the research visit. The other authors thank the support of the ICIST Research Institute, IST, Technical University of Lisbon and FCT (Foundation for Science and Technology).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ecem Edis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Edis, E., Flores-Colen, I. & De Brito, J. Building Thermography: Detection of Delamination of Adhered Ceramic Claddings Using the Passive Approach. J Nondestruct Eval 34, 268 (2015). https://doi.org/10.1007/s10921-014-0268-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10921-014-0268-2

Keywords

Navigation